Author Archives: parvusimperator

The Pizza MRE

Let’s kick off a series on army food by discussing some awesome news. Take a look:

eating pizza mre

At first glance, this picture is nothing special. A couple American soldiers enjoying a pizza. We Americans love our pizza. But look closer.

That is MRE pizza. Pizza in a ration, which means they’ve figured out how to make something solidly shelf stable without making it out of every chemical in Dow’s catalog.

To understand the significance of this, let’s take a step back. Like most military rations, MREs used to be absolute crap. But then the First Persian Gulf War happened. As you might be aware, there’s literally nothing in northern Saudi Arabia that is edible. Unless you like sand. So everything had to be shipped in, including food. Which meant dining options were MREs, MREs, or MREs. For everybody. Even the Generals. So instead of just a bunch of grunts complaining that food sucked, a bunch of generals with a constellation’s worth of stars on their shoulders were complaining that the food sucked. And that got some changes to happen, and the improvement program has continued ever since.

As part of the continuous improvement program for MREs, the guys at the US Army Soldier Systems Center in Natick, Massachusetts conduct a poll of soldiers every so often. This poll asks soldiers to rate every ration in the current set of menus, and asks them what they’d like. Meals that consistently score poorly are pulled and reworked, and Natick tries to fulfill the requests. The most consistent request for many years has been a pizza MRE.

The problem was shelf stability. MREs need to last in a storage depot for a while. The usual benchmark is 3 years, and you might imagine this is difficult with a pizza. But they’ve finally figured it out, and soldier food is about to get better.

Competition Meets Tactical: SOF STI 2011s

I love competition shooting, and I love modern military gear. Sometimes, the two worlds collide, and I always find such events fascinating. Let’s take a look at a little bit of Special Operations history, courtesy of an old Gunbroker auction and the late, great Weaponsman.

First, some competition background. In the USPSA Limited1 division, the dominant platform is the double-stack 1911, often called a 2011, which is the trade name used by STI for their pistols. Since STI is the biggest builder of these, and where to go for a factory-type solution, the name has stuck. While people use other guns in Limited, the 2011s are the most popular. Since it’s based on the 1911, with its expired patents, its wide open for people to play with, so you can get your gun customized to your heart’s content. While it’s the indian, not the arrow, that decides results, nobody wants to shoot a lame arrow. Plus the 1911-style, single-action, sliding trigger is super easy to make amazing. There are no better triggers than a tuned 1911-type trigger for shooting.

Around 2006-2007, one of America’s elite special operations units decided to experiment with these pistols. Here are a pair of them.
STI 40s

A few things to note. They’re chambered for .40 S&W, not 9mm NATO like you might expect. Being based on the 1911, which was originally designed around the .45 ACP cartridge, 2011s tend to be easier to make reliable with longer cartridges. .40 S&W is a bit longer than 9mm NATO, so that helps. Plus, the vast majority of 2011s are chambered in .40 for USPSA,2 that’s where most of the experience in keeping them running is focused.

From the auction description:

Both of these STI 2011 .40 caliber pistols saw actual issue and use in a US Army SOF unit in 2006-2007. One pistol is in 93%+ condition and the other is in 96%+ condition. They are consecutively serial numbered and are quite possibly the only consecutively numbered set to be offered for sale. This consecutively numbered set comes with the following items: *** individual letters of authenticity from Larry Vickers (www.vickerstactical.com) for each pistol— original, unedited versions will be provided to the buyer *** six 140mm 17 round magazines *** one 170mm 22 round magazine *** one issued Surefire X200A light *** issued Safariland 6005 light bearing holster with end user modifications *** two Eagle Industries pistol cases

These are standard STI magazines with STI follower and basepad. This doesn’t sound odd, but most competitors will swap the follower and basepad out to get more capacity. More capacity is great at a match, but it tends to make the mags a bit more fussy, and extra maintenance requirements are not the friend of the combat soldier.

What did SOF think of these pistols? They liked them, but found the maintenance requirements to be more than they wanted to deal with. Specifically, issues came up with fine desert sand from the Middle East. This makes some sense. These are tightly tuned competition pistols, built for maximum shootability. Competitors don’t mind having to do a bit more cleaning of their magazines. And of course, as a general rule, guns with a metal frame and slide need more lubrication than those with a polymer frame and steel slide.

That said, in Vickers’ letter of authenticity, he said that “these were the only pistols sold outside the unit” (emphasis added). So likely lots of the men chose to keep the pistols, because they are awesome and shoot really well. Even if they might not be the best choice for a secondary weapon out in the sandbox.


  1. No electronic sights, no compensators, no barrel porting, magazines no longer than 141.25 mm. 
  2. Because power factor. 

More Body Armor Improvements: VTP and TEP

The US Army is always looking for ways to improve on it’s current standard body armor, the IOTV. We’ve already talked about one of the results of this, the Ballistic Combat Shirt. This is part of the Torso and Extremity Protection (TEP) System, and we’ll look at other developments here. We’ll also look at the results of the Vital Torso Protection (VTP) system, an effort to lighten the ceramic plates that stop rifle rounds.

Let’s start with the VTP. The result of this is an eight to fourteen percent1 weight reduction in plate weights, depending on plate size. Plates are available in the standard range of SAPI sizes, in ESAPI and XSAPI equivalent protection levels. Let’s see what this looks like.

PlateVTP Weight (lbs.)
ESAPI Size M5.0
ESBI2.03
XSAPI Size M5.5
XSBI2.39

I believe the side plates quoted above are 6″x8″ plates, but I could be wrong. There are a few different side plate sizes.

Now, on to the TEP, starting with the new vest. The new vest is called the Modular Scalable Vest. This vest includes some more clever thinking to reduce weight and improve comfort. One of the things we see on the weight reduction front is the replacement of PALS webbing, which is strips of cordura sewn to the front of the vest to create loops for MOLLE attachments to laser cutting holes directly into the cordura of the vest itself to create loops. Plus, there’s likely some new material in use for the soft armor panels themselves, judging by the weight savings. And those are significant: a medium-size MSV weighs 6.19 lbs. We’ll do a system-level comparison with the old vest, since the new one is smaller, but is expected to be worn with that Ballistic Combat Shirt.

The SPS also includes a new battle belt, called the Load Distribustion System. This is a wide, padded belt that’s MOLLE ready. It also contains some soft armor. It’s designed to allow soldiers to move some things from their vest to their belt to redistribute load from their shoulders to their hips. Good theory, but soldiers being soldiers, they’ll probably just carry more stuff. What isn’t clear to me is if the belt has some kind of system to interface with the vest. Some of the higher end armor makers in the US2 have come up with ways to attach the vest to the belt to redistribute vest weight to the hips too. I don’t know if SPS is going that route. Anyway, medium size LDS weighs 2.3 lbs.

Finally, we come to the Blast Pelvic Protector. This is designed to protect the pelvis and femoral artery from fragmentation injury. It looks kind of like a small pair of chaps, and is worn over the uniform trousers. This is an improvement over the groin protector assembly of the IOTV, as it provides all-around protection. Weight of the BPP is 1.68 lbs.

Okay. Totals time. Again, we’re going to compare system to system, understanding that there are some changes in protected area. And also understanding that I’m not a huge fan of the side plates. But the US Army is, and both vests will have them.

ComponentWeight (lbs.)
MSV, size M6.19
BCS, size M2.89
ESAPI-VTP plates, size M (pair)10.0
ESBI-VTP plates (pair)4.06
LDS2.3
BPP1.68
Total27.12

Compare this to an IOTV Gen 2 (medium size) weight of 31.79 lbs from the manual, and we have a weight savings of 4.67 lbs. Not bad, SPS program. Not bad at all.


  1. These differences don’t totally agree with my prior weight chart numbers, so I may be missing some versions. Or some of the numbers may be inaccurate. And XSAPI was a guesstimate anyway. 
  2. Offhand, Crye Precision and Tyr Tactical. 

Resurrected Weapons: AGM-129A/B ACM

The AGM-86 Air Launched Cruise Missile was a great way to extend the service life of the B-52. Now, despite the massive Soviet air defense network, SAC’s beloved manned bombers could rain nuclear hellfire down on godless communist scum from over 1,500 nautical miles away. Perfect for keeping big, slow bombers away from fancy air defense systems. And we’ve seen the effectiveness of cruise missiles with conventional warheads many times in Iraq.

But those commies had innovations of their own. They managed to make look-down/shoot-down radars for their advanced fighters, and even had a native AWACS by the 1980s. These could spot the small AGM-86s and shoot them down. One of the key goals of SA-15 was to be able to successfully engage inbound AGM-86s.

You probably guessed the answer to the above problem: stealth. Enter the AGM-129. The Advanced Cruise Missile.1 It had modern, low observability shaping and radar-absorbent material coatings to make it as sneaky as possible. Now it could exploit imperfections in radar deployments, with a vastly reduced detection range allowing it to elude Soviet air defenses. The AGM-129 also had an improved version of the Williams F107 engine that powered the AGM-86. The newer F112 used advanced internal coatings to reduce the thermal signature of the AGM-129. It also brought large improvements in range over the AGM-86’s 1,500 nautical mile reach, though the exact range figure for the ACM remains classified.

The guidance and navigation systems were also improved, but again, remain classified. Russian sources2 give it a CEP3 of 16 meters.

The AGM-129 used the same 5-150 kiloton warhead as used on the AGM-86, the W-80. It was also only marginally longer than the AGM-86, so it could still fit in the bomb bay of a B-52. However, it was about five inches fatter, had a wingspan two feet shorter, and was more than 550 lbs. heavier. And, of course, the stealth coating requires more maintenance. Here was the ultimate standoff weapon for the venerable BUFF, just in time for the end of the Soviet Union. Production numbers were repeatedly slashed, from 2,500, to 1,460, to 1,000, and then to the final total of 460 missiles.

Higher maintenance costs would eventually doom the AGM-129 to withdrawal from service in 2012. Which is a shame, because even if you’re not big into nuclear strikes, a conventional variant4 would be very useful against nations with modern, integrated air defense systems.

Verdict: Funding Approved by the Borgundy Air Ordnance Procurement Board

 


  1. A very creative name. 
  2. Seriously, they are the only ones that are willing to hazard a guess. 
  3. Circular Error Probable, i.e. the size of a target that the guidance/navigation system has a 50% chance of hitting. 
  4. To the best I am able to determine, no such variant was proposed. From other conventional variants of cruise missiles, we can reckon that replacing the W-80 with high explosives would give an approximately 1,000 lb warhead. 

Resurrected Weapons: FIM-92 RMP Block II Advanced Stinger

The Stinger missile is a hugely successful MANPADS, but it does have cancelled variants, and that’s what we’re going to talk about today. First, a brief discussion of the Stinger.

The FIM-92 Stinger is a man-portable SAM, designed in the late 70s to replace the earlier FIM-43 Redeye. The Stinger is 5 ft. long, 70mm in diameter, and weighs about 34 lbs in its launch tube ready to fire. Unlike Mistral or Starstreak, Stinger is fired from the shoulder, not a tripod.

Stinger has an effective firing range of about 5 miles, due to the nature of its seeker. It uses a dual-spectrum IR and UV seeker. Adding the UV spectrum makes the job of countermeasures designers harder. The countermeasure now has to duplicate the signature of the aircraft across two spectra, not merely the infrared one.

Stinger has been deployed in several conflicts, and has proven effective. It’s easy to use and good at denying aircraft the use of lower altitudes, forcing them out of its engagement envelope.

In addition to use in the man-portable role, the Stinger is deployed on the M1097 Avenger SHORAD system, the Bradley Linebacker, the Stryker-MSL, and as an air-to-air defensive missile aboard Apache helicopters.

And now we come to the RMP Block II program. This integrated the focal plane array IR seeker from the AIM-9X missile onto the Stinger, which brought two key improvements. To understand these, let’s look at what exactly a focal plane array is.

A focal plane array is an array of light (in this case, infrared-spectrum) sensing receptors placed at the focal plane of a lens. It’s also known as a staring sensor, because that’s exactly what it does: it stares. Unlike a more conventional scanning array, it doesn’t build an image from narrow slices rastered across the field of view. Instead, it looks at the entire field of view all the time.

As I said, this brings two major improvements. First, the focal plane array seeker is a lot better at detecting targets than the old dual-wavelength scanning-type seeker, which gave the RMP Block II a larger engagement envelope and longer effective range. The second is a significantly better seeking capability, which translates into both improved performance in cluttered environments and significantly higher resistance to countermeasures. The imaging capabilities of a focal plane array seeker make them extremely difficult to deceive. The RMP Block II would have had good performance against advanced aircraft flying low and firing off decoys, cruise missiles, and UAVs.

The RMP Block II program was cancelled in 2002 for cost reasons. The war on terror was ramping up, and the money was needed elsewhere.

I can understand cost concerns for a MANPADS system if there are other vehicle-borne SHORAD systems available. For the US, there have been a wide variety of recent developments in SHORAD, helpfully linked above. Unlike previous attempts, these are deploying off-the-shelf missiles for the SHORAD role, including the AIM-9X, which has a motor that’s a better ballistic match for the range capabilities of the FPA seeker. The Stinger is already reasonably effective at denying lower altitudes and getting aircraft to fly higher, and low cost encourages wide deployment. I’m inclined to use the money for other things.

Verdict: Funding Denied by the Borgundy War Department Army Ordnance Procurement Board

Engineering Tradeoff Q&A: Puma and Bradley

I finally worked out answers to a few things that puzzled me for a while, and figured it might be fun to post here in a sort of Q&A format. This follows our articles looking at loadouts for the Bradley and Puma IFVs. Having read those articles, you might be wondering the following:

  • How does the Bradley manage to carry so much ammo?
  • The Puma IFV has an unmanned turret, so no turret basket, and it’s pretty large. So why does the Puma only have space for six dismounts?

The space under the turret on the Puma, where we would expect a basket to be on a manned turret, is actually a bunch of storage bins. It takes up about the same amount of space that two more shock-resistant seats would. So that’s where the space goes.

That begs more questions. Why do we need those bins? The Puma requires storage bins under the turret because the Puma’s sponsons contain fuel and various systems. They can’t be used for storage. On the smaller Bradley, the sponsons are empty and open to the cabin. So the space behind the bench seats can be loaded up with tons of stuff for both the vehicle and the dismounts. Check out this picture to see what I mean:

M2A2 storage space

Happily, this picture shows the space being used with things you are probably familiar with, like a cooler and a bunch of 2-liter bottles. In combat conditions, we’d expect this to be full 25 mm ammo boxes and TOW missiles for the Bradley, plus food and ammo for the crew and dismounts. If you give up that storage space, you have to put the stuff somewhere else. And you can’t easily relocate stuff for the dismounts outside of the crew compartment. Hence, storage lockers. Note also in the above picture the floor panels at the bottom left. These can be lifted up to access yet more storage space. This space is normally used to fit 25mm ammo. We can also see some storage space under the bench seat. Convenient, but not the best when dealing with antitank mines.

The Puma uses the in-cabin storage lockers for stuff for the dismounts, and it has a bunch of external compartments to hold the 30mm ammo. The Puma was designed with protection and survivability first. The Germans went to a lot of trouble to put in decoupled running gear to minimize the number of penetrations into the hull for the suspension, since penetrations mean weak points for mines. This meant that the sponsons had to hold more suspension gear. Plus, the Puma’s designers tried to isolate the passengers and crew from the fuel and ammo.

The Bradley was designed in an earlier time when survivability was not as paramount, and its designers put firepower first to counter the expected hordes of Soviet light armor. If the Bradleys could take those out, American tanks would be free to concentrate their fire on enemy tanks. Or so the theory went. While possessing a bit of a glass jaw, the Bradley proved to be an excellent vehicle killer in Desert Storm, and was a good fire support vehicle in Operation Iraqi Freedom.

M2A5 Bradley Proposals

The US Army is continuing to look at options to improve its Bradley fighting vehicles. In the wake of the termination of the Ground Combat Vehicle, the US Army sought a cheaper incremental upgrade process, consisting of two engineering change proposals. ECP1 improved the suspension and tracks, and ECP2 improved power generation and internal networking. For the record, Bradleys that have received both ECP1 and ECP2 are designated M2A4.1

But the US Army is not content to stop there. Further upgrades are being considered, and they consist of a series of proposed changes to both the hull and turret. The final M2A5 will probably consist of some combination of these.

Hull Changes
ECP1 added a reworked suspension to handle more weight. Let’s use that weight. The reworked hull design proposal uses a bunch of design work from the successful AMPV program, which is based on a turretless Bradley. The reworked hull should accommodate more armor and likely some kind of active protection system.2 It’s also somewhat taller than a regular Bradley. The biggest difference is a bit of hull stretch to accommodate an eighth solider. No extra roadwheels will be added. I’m curious about the new seating arrangement.

Turret Changes
This is a little less interesting to me, because these proposals aren’t really anything we haven’t seen before. The conversion from 25x137mm M242 to 30x173mm Mk. 443 is something that’s been trialed before and proposed before. Again, ready capacity decreases from 300 rounds to 180 rounds. Gains include armor piercing growth room,4 ammo commonality with the Stryker Dragoon, and the possibility of using airburst rounds. Not on the docket is any change to the TOW missile launcher. I might have expected Javelin instead, but that doesn’t look to be in the cards.

Alternatively, as ever there are rumors about the US Army investigating foreign made IFVs. I would expect the ASCOD 2 and the Puma to be on the short list of candidates being looked at. Maybe they’ll try to license one. Or maybe not.


  1. Finally. Wish they’d finally designate an M1A3 Abrams… 
  2. The system hasn’t been chosen yet, and it might get integrated into the turret. Or not; the TOW launcher is kind of in the way. 
  3. Or a derivative of the Mk. 44, like the M813 on the Stryker Dragoon. 
  4. 25x137mm Depleted Uranium APFSDS is roughly equivalent to 30x173mm APFSDS, so some well-made DU rounds should give yet more punch to the 30x173mm. 

EXTRA: Trouble at SilencerCo?

We interrupt our regularly scheduled posting to bring you this Extra Edition. Today we’re going to get business-y and talk a little bit about problems at SilencerCo. As you may have gathered if you don’t already know, they make suppressors.

A lot of this is speculation, because SilencerCo is not publicly traded, so there are no financial statements to read. But here’s what we know:

  • They haven’t had a big, mass-appeal product for a while now. The last one I recall was the Omega.
  • Their most recent product launches are pretty niche market. One of them, the Maxim 9 integrally suppressed pistol, was definitely an R&D-heavy project.
  • Between people waiting to receive silencers that they panic-bought during the Obama administration and people waiting to hear a decisive yes/no vote on the Hearing Protection Act, the silencer market is pretty down right now.
  • SilencerCo has had a rocky relationship with Silencer Shop lately, and Silencer Shop is one of the biggest silencer retailers in the US, and certainly among the easiest to buy from.

All of the above combine to really hurt cash-flow. They desperately need a rebound product and marketing help, both of which require money. SilencerCo has been going through a few rounds of layoffs. Which might just be reorganization.

Currently, there are rumors floating around that the top three executives have been voted out by the creditors at a shareholders’ meeting. And that is starting to get troublesome. It definitely looks like trouble is coming to a head over in West Valley City.

I hope SilencerCo can pull it out, but it doesn’t look good. We’ll see how it turns out.

What’s In a Bradley?

Let’s take a look at what’s in a Bradley, courtesy of Hunnicut’s excellent work on the vehicle. Some of the information below is a little old (it’s from back when the M60 was the US Army’s squad support weapon), so I’ll make estimates for more modern systems as appropriate.

–Equipment for Vehicle Subsystems–

  • Fuel: 175 gal.
  • Engine oil: 26 qt.
  • Ready 25mm rounds: 300
  • Stowed 25mm rounds: 600
  • Ready 7.62mm rounds: 800
  • Stowed 7.62mm rounds: 1,4001
  • Ready TOW missiles: 2 missiles
  • Stowed TOW missiles: 5 missiles (Or 3 TOW missiles + 2 Javelin missiles, see below)

–Equipment for Dismounts–

  • Stowed 7.62mm rounds: 2,2002
  • Stowed 5.56mm rounds: 5,3203
  • Stowed AT4 Rockets: 3 rockets
  • Stowed ATGMs: 0 or 2 Javelin missiles

Curiously, in the tables in Hunnicutt’s book, both AT4 and M72 LAWs are listed as carried. In the text he mentions that AT4s were carried instead of LAWs and stowage was altered accordingly. I’ve gone with the latter here. We can also see that the Bradley is absolutely loaded with ammo.


  1. In Hunnicut’s table, ammo for the coax M240C is noted separately from the ammo for the M60 that’s to be deployed with the squad. I have preserved the distinction here (See also note 2) 
  2. These might also be used in the coax gun, since they’re still linked 7.62x51mm. Alternatively, this space should hold about 3,300 rounds of 5.56mm belted ammo for M249s, which is the current squad automatic weapon of the US Army. 
  3. Originally these were separated out for the M239 Firing port weapon and the infantry’s M16s, but the M239s didn’t work very well, and later versions of the Bradley plated over the firing ports. In any case, the M16 and M239 use the same magazines, so I haven’t split the ammo out here like Hunicutt does. 

What Does a Puma Carry?

Here’s a list of stuff that a Puma carries, at least according to Tankograd’s wonderfully photo-laden book on the vehicle.

–Equipment for Vehicle Subsystems–

  • Fuel: 900 L
  • Ready 30mm ammo: 200 rounds
  • Stowed 30mm ammo: 161 rounds (in seven-round boxes)
  • Ready 5.56mm ammo: 1,000 rounds
  • Stowed 5.56mm ammo: 1,000 rounds
  • Ready ATGM: 2 missiles
  • Stowed ATGM: 0 missiles
  • Grenade Launcher, Ready Rounds: 12 76mm Grenades -OR- 24 40mm grenades

–Equipment for Dismounts–

  • Stowed 5.56mm ammo for dismounts: 1,500 rounds
  • Stowed 40mm grenades: 36 rounds
  • Stowed frag grenades: 30 grenades
  • Stowed smoke grenades: 7 grenades
  • Stowed signal rounds: 20 rounds
  • Stowed rockets: 4 Panzerfaust 3 rockets and 2 launchers
  • Stowed Water, 1.5 L bottles: 32 bottles

The Tankograd volume doesn’t make mention of how much of the 5.56mm ammo stowed for the dismounts is in magazines and how much is linked for the dismounts’ MG4. 1,500 rounds doesn’t seem like all that much for six men, but perhaps the Germans trust their supply. It’s nice that Tankograd notes how much water the Puma usually carries.