Tag Archives: Borgundy

Configuring a Leopard 2 for Borgundy

As mentioned previously, the Leopard 2 has a ton of available upgrade options. So let’s go to our local KMW Dealership and select our optional extras. Since I’m sticking with various catalog options, I’ll list the model or project where you can find the option.

We’ll start with the turret, since there are a few different configurations available. There are basically no old stocks of Leopard 2A4s that people are looking to part with, so we’ll have to go with new-build units. We’ll also select the gunner’s sight mounting above the horizontal axis of the main gun, as on the Leopard 2A5 and subsequent models. We’ll also opt for the lengthened turret bustle, as seen on the Strv. 122 and some other exported models. We’ll also opt for the electric turret drive for both traverse and gun elevation, again, as pioneered on the Leopard 2A5.

One of the key things that got the Leopard through our gauntlet of armchair1 testing is the gun. We’ll opt for the Rheinmetal 120mm L55A12 smoothbore, the finest gun in the west.

Now, let’s talk armor. As always, we’re using the best and latest composites. Our inserts will be those of the German Leopard 2A7. We’re going to opt for the standard 2A5+ wedge applique on the turret front. We’re also going to take the roof protection kit that the Swedes got on the Strv. 122. We’re also opting for a glacis applique package, again with those modern composites. We’ll add the armored housing for the commander’s sight that’s popular on some of the later export models, including the Strv. 122. And of course, we’re going to opt for spall liners.

We’re not done. There are a bunch of other supplemental packages that we can add or remove as needed. There’s a mine protection kit that was first seen on the Leopard 2A6M. There’s no good reason not to get the belly plate these days. And then there’s the flank protection. The skirts come in two sizes, with the older ones being about 150mm thick and the newer ones about 325mm thick. We’re going to take the newer, thicker ones. We’ll also take advantage of the mounting points on the sides of the turret in the newer Leopard 2 models to mount some nice AMAP modules for side protection.

Our armor changes listed above will necessitate some other, minor structural changes. The roof protection setup means we’ll need to redesign the hatches on the turret roof. The new ones are slide-opening. Again, this can be seen on the Strv. 122 or the Leopard 2HEL. We’ll also opt to add the roof storage boxes for the crew’s carbines that the Danes opted for on the Leopard 2A5DAK. Internally, we’re going with shock mounts and a protective kevlar cover for our ammo rack. This will protect against splinters and provide some measure of blast dampening, but will reduce reserve ammo capacity from 27 to 21 rounds.

On to the sensors! For the commander, we’ll select the PERI R17A3 sight, which comes with the Attica GL 3rd Generation FLIR system and an eye-safe laser rangefinder. This is a pretty standard addition on the Leopard 2A7 and related models. We will also put the Attica GL into the gunner’s sight, replacing the older WBG-X FLIR. We’ll also take the opportunity to upgrade to an eye-safe laser rangefinder for the gunner. Further, like the Leopard 2HEL, we’ll add a crosswind sensor for improved targeting system efficacy.

We are not done. There are many more internal systems to pick. We’re going to go back to the Bundeswehr’s A7 and A7V for some of the other systems in the turret, specifically the ultracapcitors and the integrated air conditioner/NBC system. These are in the right rear portion of the turret bustle, replacing the turret hydraulics on older model Leopard 2s. We’re also going to use the upgraded Steyr M12 APU, capable of generating 20 kW. We’re going to round out the electronic systems suite with a battle management system and the SOTAS-IP Communication system.

Because RWS are the hot, not-so-new thing, we’re going to fit one, namely an FLW 200 RWS with an M2HB heavy machine gun. This will replace the loader’s machine gun mounted on the roof.

We’re also going to select a few extras to provide more protection. These are Saab’s Barracuda multispectral camouflage system and Rheinmetall’s ADS Gen 3 active protection system. Barracuda makes the tank harder to spot visually, and reduces the thermal signature. And ADS is a fast-reacting, relatively3 safe for nearby infantry active protection system to intercept those pesky rockets.

And there you have a Leopard 2A7 BOR model. It’s pretty great. I’m also going to talk briefly on support variants, since the Leopard 2 has several. We’ll want an armored recovery vehicle and an armored bridgelayer. For bridging, we’ll go with the Panzerschnellbrücke Leguan, and for armored recovery, we’ll go with the Wisent 2. The Wisent 2 also comes in an armored engineer vehicle version, and we’ll buy those as well.

  1. It’s a very comfortable armchair. 
  2. Ordered by the Bundeswehr and in production as this goes to press, so I can have some too. 
  3. Still dangerous, but tests show an ADS interception of an RPG-7 rocket is less dangerous than the detonation of said RPG-7 rocket. 

More on the Namer

We picked the Namer as our IFV of choice. But I have more to say about it, and a few things I might like to tweak. First, let’s take a good look at the turret.

namer ifv turret

This is from a presentation, so it’s a trifle incomplete. We can see most of the mechanisms though. Note that the popup missile launcher has a pair of MATADOR rockets installed here. These could also be Spike 2 ATGMs. There’s also no indication (at this stage) of an autoloader for the Trophy install, or any indication of the autoloader assembly for the mortar.

Still, it’s a great turret. I really like the firepower in the Namer IFV. We could debate caliber until we’re blue in the face, but 400 rounds of 30x173mm plus two rockets or missiles is very solid. However, I’m a good armchair strategist, and I can always find things I might like to tweak given the opportunity. We’ll go through these in order of ease of doing.

  1. Side skirts. The skirts on Namer aren’t very thick. Thicker skirts would help protect against incoming RPG fire better. Given the vehicle’s size, this is an obvious threat vector, so let’s armor up.

  2. Engine change. The Namer currently uses the AVDS-1790, which generates 1,200 hp. We also know the Namer is very heavy. The CEV version (which has Trophy but no turret) weighs 63.5 tonnes, and the turret is going to mean even more weight. To improve mobility, we’d like ours built with the MTU 883 engine, which makes 1,500 hp. This is the engine used on the Merkava 4, so this change should be pretty easy to do.

  3. Glacis work. Due to being a newer, liquid-cooled engine, the MTU 883-based powerpack is smaller than the one built around the AVDS-1790. A smaller powerpack means there’s more room for glacis armor, so let’s fill the void. There is no such thing as too much armor.

  4. APS change. I like Trophy. It’s combat proven. But IBD Disenroth1 has a system called AMAP-ADS. The Gen 3 version reacts considerably faster than Trophy (0.56 ms for ADS compared to 300-350 ms for Trophy). In Swedish tests, ADS also has a smaller danger space for nearby infantry. Further, in the turret picture above, we note a lack of reloads for Trophy. We can fit a whole bunch of ADS effectors on the Namer, and we’d like to do so.

  5. Additional missiles. Given the deletion of trophy from the turret, it might be nice to see if we could get more missiles in there.

  1. Now a subsidiary of Rheinmetall. 

MBT Roundup 2018 Addendum

It appears that I have made a minor screwup, dear reader. In my 2018 MBT roundup, I neglected to come down on a choice for Borgundy. Also, I completely left out the Merkava 4. I will rectify them both here.

To make our comparison easier, it will help to pick a winner from our roundup. It is a tossup, and we don’t have much in the way of political or pricing configurations to throw in. But let’s break it down anyway. As far as I’m aware, the Abrams has never been offered for export with the depleted uranium armor. That said, it’s been offered with arrays of similar weight, so it shouldn’t be terribly worse off. Sweden’s testing showed that even with some supplemental armor on M1A2, Leopard 2A5 had overall better protection. Abrams could also really use a gun upgrade or else we’d be stuck hoping the US will sell their latest antitank rounds. The Abrams has been fitted with an L55 gun, but there were stabilization issues and the US Army hasn’t paid to fix them yet with a new stabilizer. We could, but that violates my COTS rules. So the Abrams is out.

My COTS rules also give the Leopard 2 the win over the K2, though here it’s much closer. The superior gun and some of the available protection options make the Leopard the better buy given the rules I have set for myself. Clearly Samsung Techwin could work up a solution and present it for evaluation (fixing the gun problem is pretty simple, really), but as I am limited to armchair analysis, I have to make do with what I have. The K2’s lack of a good top-attack armor protection solution is problematic, as is its acceptance of more weaker zones on oblique shots in the pursuit of less weight. So the Leopard 2 is our champion.

Let’s now throw the Merkava 4’s hat into the ring. I know it hasn’t been compared in any trials, but that’s part of the fun. I’m pretty confident the Israelis would export it if someone asked. The Merkava is a big, heavy, generally well-protected tank with some unique design features. These features are based on Israel’s experience in the Yom Kippur war, among others. These features include a front-mounted engine, door at the rear of the hull for easy resupply, removable ammo racks at the rear of the hull to allow the Merkava to evacuate soldiers, and a 60mm mortar in the turret.

The Merkava 4 has a 120mm L44 smoothbore gun. The MG253 on the Merkava 4 has a longer than standard recoil length, and should be able to take higher pressure ammunition. As far as I am aware, the Israelis do not use depleted uranium in their APFSDS rounds. Admittedly, they don’t have much in the way of modern armor threats to prepare for these days.

On to the comparison. I would expect the Leopard’s L55 gun to be able to get better penetration than the L44 gun on the Merkava, even with enhanced ammunition in the Merkava. I would certainly expect the L55A1 gun to do better. Advantage Leopard.

In terms of protection, it’s hard for me to adequately gauge protection levels. Merkava 4 seems to have better protection on the sides and roof of the turret. It also seems to lack wide skirts like those available on the Leopard 2. Also, the Israeli armor arrays are optimized towards the threats they face, which tend to be lots of ATGMs, and not much in the way of APFSDS threats. We’d expect Merkava, with all of its heavy side and roof protection and very large frontal profile to be less well protected towards the front.

I’d also like to talk a little about ammunition stowage. The Leopard 2 has 15 ready rounds in the rear of the turret. There’s another 22 or 27 (depending on version) rounds stored in the front hull, next to the driver. This provides good protection across the frontal arc, but does leave the ammunition vulnerable to side hits. No blow out panels or bulkheads are provided. The Merkava 4 has ten ready rounds in a pair of drums which can present rounds to the loader. Remaining rounds are stored in cases at the rear of the hull. These can be removed to facilitate evacuating wounded. There are no bulkheads or blowoff panels for the Merkava’s hull ammo storage either. Given its location, the ammo storage on the Merkava is vulnerable to side hits as well as wider-angle shots from the front arc that penetrate the side armor and hit the front of the storage area. It’s a small thing, but I prefer the storage arrangement on the Leopard 2. I also prefer the Leopard 2’s larger ready ammo supply.

Merkava 4 has an in-production active protection system. The Leopard 2’s has been trialled, but none have been ordered yet by Germany. At least one user has placed orders, though.

Overall, I think the Leopard 2 is the better buy. It’s better suited for tank v. tank combat, which is the first mission of Borgundy’s MBT Corps. Leopard 2 has the better main gun. It has very good frontal armor, and adequate side protection considering that we do not expect to fight an irregular war with extremely well equipped terrorists.1 Plus, the Leopard 2 has a number of available configurations, and is more easily tailored to the customer’s needs. Additionally, it’s protection is more forward oriented. And of course, Leopard 2 has a ton of excellent upgrades available.

  1. I.e. we are not fighting Hezbollah anytime soon. 

Fitting Out a Fantastic Burke

The Arleigh Burke class guided missile destroyers are the best exemplar of the type currently at sea. They are among the few truly multirole ship classes, able to perform any duty one might reasonably ask of them. Despite the design approaching its thirtieth birthday, the US Navy is continuing to build them, and they’re reasonably popular on the export market. With such a long life comes plenty of upgrades and options, so let’s see how we’d fit one out. DDGs, nicely equipped. One small note before we dig into this: I’m going to limit myself to features proposed or actually fitted to Arleigh Burkes, not hypotheticals like putting the SPY-3 radar on one.

Hull Variations
First, we have some decisions to make about the hull form. We’re going to take what I’ll term the “large form” hull, which was originally designed in the early 90s as the “Flight III” variation.1 This version was cancelled, but the design got used in the South Korean variation of the Arleigh Burke, the Sejong the Great class. This means an increase in length of 32 feet 4 inches, an increase in beam of 4 feet 3 inches, and 32 additional VLS tubes, for a total of 128.

Radar Systems
The radar is a critical system on a DDG. A long range radar allows for the tracking and engagement of multiple targets, which is important for the survival of the ship, plus any others she’s escorting. Radar is key, so we’re going to get the best and latest: AN/SPY-6. SPY-6 is an actively scanned phased array, unlike the passively-scanned SPY-1D fitted to most Burkes. The SPY-6 is more sensitive, can track many more targets, is more resistant to ECM, and might have the possibility of being a jammer in its own right. Super cool. It also provides solid ballistic missile defense capabilities.

But that’s not enough. While the big SPY-1/SPY-6 radar is the most prominent, there are other radars that complement it to provide better capabilities for the Aegis Combat System. A new and fancy radar is in the pipeline to compliment the SPY-6, but development hasn’t been completed yet, and the initial Flight III ships will start with integrating only the new SPY-6. Currently, the standard companion radar is the AN/SPQ-9B. It’s an X-Band suite optimized for tracking ships and low flying aircraft2 in littoral regions. It can also provide terminal guidance. I would like to see a more advanced system replace the SPQ-9B, but I’m very happy the US Navy is upgrading one system at a time.

Burkes have been fitted with most western CIWS. Phalanx, Goalkeeper, RAM, and SeaRAM. We’re going to focus on the missile-based systems, since I’m a huge fan of the RIM-116. The choice comes down to launcher. The Mk. 49 GMLS has a 21-tube system, but requires external fire control information for cueing. The SeaRAM system has a capacity of 11 missiles, but comes with the radar and IR sensors used in Phalanx Block 1B, so it’s completely autonomous. Personally, I think I prefer the Mk 49, given that we already have an excellent radar suite. However, I could be swayed if the data exists showing that a separate radar on the CIWS is the better bet.

Funnel Structure
No option is too small for us to consider. There are a few different funnel designs on the various Burke flights. We’re going to go with the newer design that extends the external funnel structure up to the level of the exhaust tops. This reduces signature a little, and every little bit helps. This particular design element was first introduced on USS Mustin (DDG-89).

The AN/WLD-1 Remote Minehunting System (RMS) is an unmanned underwater vehicle that allows minesweeping operations without putting the mothership at risk. Mines are a huge and underappreciated threat, and this is a welcome addition. Fitting the RMS requires some amidships structural changes to accommodate the launching, recovery, and storage of the UUV. Part of these are moving the triple 325mm torpedo tubes from the main deck amidships to the missile deck aft. These modifications can be seen on some of the US Navy’s newer Burkes including USS Momsen (DDG-92).

Unsurprisingly, we’re selecting the aft helicopter hangars. Helicopters are good. I’m really not sure why early Burkes didn’t come with actual aviation facilities, but that was the decision someone in the Navy made. This puts in hangars with space for a pair of Blackhawks aft.

Sonar Systems
For our towed array, we’ll opt for the SQR-20 MFTA. It has both active and passive sonar systems, and offers improved reliability, coverage, and detection capability over the previous standard SQR-19. Bow sonar will be the SQS-53C.

I really don’t care much about the naval gun. It is not a key capability of the ship. My choices are all 5″ guns, given my constraint that I can only select from existing options. If I could put a 76mm up front to save cost and space, I would. But I can’t. So we’ll take the Mk 45 Mod 4 gun. Good enough.

That covers our standard options for our Burke. They should do well.

  1. I’m not sure if this will be used on the upcoming-production flight III ships or not. 
  2. Aircraft meant in the loosest possible sense of the word, so airplanes, helicopters, uavs cruise missiles, antiship missiles, et cetera. 

2018 IFV Roundup

In the spirit of my revisiting of MBTs in 2018, let’s also take another look at IFVs. Happily, this field is a little more saturated, and has some interesting options available.

Of course, I’m also not about to throw away perfectly good data. The Czechs looked at ASCOD 2, Lynx, Puma and two versions of CV9030 (one with a manned turret, one with an unmanned turret). That’s most of the in-production contenders from the West. So let’s see which won what and go from there, shall we?

And then the Puma swept the competition. It had better reliability than all other test vehicles, being the only one not to have to repeat a test due to a breakdown. It has better protection than its rivals. It has better mobility than its rivals too. And, while all vehicles were armed with a 30mm gun, the Puma was significantly more accurate. The Puma had 37 hits out of 40 shots fired, and the next-best competitor did about half as well.

That’s pretty good. However, the Puma is the most expensive of the lot, and the Czechs might like to look at some other variants besides a pure IFV. They may end up buying Puma IFVs and something else for the more utility-type roles.

Of course, I wouldn’t just write a new roundup to simply say, “I agree with the Czechs.” Even though I totally do. Of the vehicles tested, the Puma has proven to be tops. Best by test. However, the Israeli Namer IFV was not in the test (certainly its present form wasn’t ready yet), and that’s worth a look. And, as always, we’re assuming both are available and marketed.

First, a brief run down of Puma. The Puma weighs 43 tonnes with all armor modules installed. Some modules can be removed to permit the Puma to make weight for transport in an A400M. It has a 30mm autocannon with 200 rounds of ready ammo, a 5.56mm1 machine gun with 1,000 rounds of ready ammo, and a two-tube launcher2 for Spike ATGMs. It has a crew of three and carries six dismounts. It has an MTU 890 V10 engine that makes about 1,100 hp. It exceeds STANAG level 6 protection on the front, meets level 6 on the sides (the highest level for KE threats), and makes STANAG 4 on the bottom against mines (confusingly, level 4 is the highest for mines). It also has an integrated soft-kill active protection system (i.e. a DIRCM). Annoyingly the STANAG levels for KE protection make no mention of what sort of shaped charge threats they can counter, and there’s no separate scale for that either.

And now for Namer. Namer weighs about 60 tonnes in its APC form, and the Israelis haven’t updated the approximation for the IFV version. It has a 30mm autocannon with 400 ready rounds, a 7.62mm machine gun with 700 ready rounds, two Spike ATGMs, and a 60mm mortar. The turret also comes equipped with the Trophy hard-kill active protection system. Namer has a crew of three and carries nine dismounts. Namer is powered by a 1,200 hp AVDS-1790 engine.

For the Namer, the Israelis haven’t released information on its protection level (and STANAG only goes up to level 6, which is merely being able to stop 30mm APFSDS), so we’ll have to guesstimate. Namer weighs about as much as a Merkava, but it lacks Merkava’s big tank turret. The Israelis say they’ve put the weight into protection, which makes sense. There aren’t many other places where that weight could go. Also, the APC version of the Namer has been shot at with Kornet missiles in Lebanon. Kornet is a modern Russian ATGM, but it was not able to penetrate the frontal armor. It did penetrate the side armor, but did not harm any of the soldiers inside. This is pretty impressive, so I’ll give a win to Namer in the protection category.

Firepower is mostly a wash. The Namer has twice as many ready rounds, but I don’t have a good notion of how many we can expect to use in an engagement before resupply. So I don’t know if it actually matters. Both have a pair of Spike ATGMs. We haven’t seen a comparative test between the two, so we don’t know if one or the other has an accuracy advantage. Namer also comes with a mortar. I’ll give it a firepower edge, conditional on the lack of head-to-head shooting competition.

In terms of mobility, the Puma is the clear winner. It has only 100 less horsepower while being several tonnes lighter. There were notions of putting the 1,500 hp MTU 883 in the Namer, but that hasn’t been done yet. We would like to look into this as well. The Puma is also easier to move to the battle by far. Again, it is lighter, and armor modules can be removed to get it in an A400M. The Namer is going to have to be transported with one’s tanks. Clear win for the Puma in both strategic and tactical mobility.

Tactical mobility is always to be prized. In the case of strategic mobility, it can also be quite useful. Here, however, I am not so sure. As I have commented previously, IFVs should operate in conjunction with tanks. Deploying tanks in quantity somewhere is going to require naval transport or rail transport or both. And if you’re already doing that for the tanks, you may as well load the IFVs on there too.

For me, this is not a hard choice. I like Puma, but I like the Namer more. I like carrying nine dismounts, and I like having as much (or more) armor on my IFVs as on my tanks. Yes it’s heavy. That’s why we call them Heavy Brigades, right?

  1. Plans have been announced to replace this with a 7.62mm MG, though they’re not finalized yet. In any case, this would be easy enough to have done. 
  2. Integration and testing are in progress. We’re seeing these actually on demo vehicles now which is good. Nothing like a client to move the ball faster. 

MBT Roundup 2018

A few years ago, I wrote an MBT comparison for our procurement games. Since then, I’ve learned a lot more about the Leopard 2 and the M1 Abrams, we’ve seen some upgrade programs for both tanks, I’ve gotten enough data on the South Korean K2 to write on it, and Russia has introduced the T-14. Also, I love tanks. So let’s do another roundup. As always, I’m limited to open source guesstimates only.

The T-14 has a brand new 125mm gun, which can handle higher pressure rounds. So it’s almost certainly better than previous Russian guns. Whether it’s better than the latest Western stuff depends on whose propaganda you’re reading. I’m inclined to guess it’s going to be similar to the latest Rheinmetall options. Possibly a bit better because it’s newer.

Both the K2 and the newest Leopard 2 variants use the longer L55 version of Rheinmetall’s 120mm smoothbore, which gives more velocity than the Abrams’ M256 (a derivative of the Rheinmetall L44). Which would be better if all other things were equal, but they aren’t. The Americans use depleted uranium APFSDS rounds, which work better than tungsten (which Germany and South Korea use), all other things being equal (they still aren’t). Overall, tungsten sabot rounds from the L55 and depleted uranium sabot rounds from the L44 are about equal as far as armor penetration estimates are concerned. New rounds continue to come from the Americans, and there’s a plan to upgrade the L55 to the L55A1 which can take higher chamber pressures. Also, the Americans have finally added the capability to interface with datalinks on gun rounds in the SEPv3 Abrams, and this is present on the guns for Leopard 2 and K2. So this is very roughly a wash. Some magical person might be able to point to specific advantages of one option or another against specific targets, but this is all I’ve got with unclassifed, dodgy sources.

Damn it, this is classified too! UGH. In all seriousness, this too will be a wash in the main, because everyone’s got about the same technological problems, even if they come at it a little differently. Abrams and Leopard 2 have been receiving consistent upgrades, so their frontal armor should be just as good as the newer K2. T-14 has unclear amounts of protection on the turret, but only the gun is mounted there. Hull frontal protection should be good across the board too, given upgrades. Note that the Leopard 2 and Abrams have excellent side protection kits, should you wish to use them in cities full of scumbag insurgents. T-14 seems to have some quality skirt options as well, but K2 lacks similar levels of optional side protection. In terms of active protection, T-14 comes fitted with hard-kill APS systems from the factory, Abrams is getting Trophy kits installed (they’ve passed trials and money is allocated), K2 is fitted for but not with hard kill kits and the Germans are still trialing their hard kill setup. I should also point out that in the past the Americans have been reluctant to offer up their best armor technology in export models. The Abrams with export-level armor would be expected to be less good than the latest Leopard 2 variant or K2.

So you’ve been hit, and your armor is penetrated! That really sucks. Now what?
T-14 isolates the crew completely from the ammo. There are also blow-out panels on the bottom. Not sure about the turret, it might get wrecked, or there might be venting measures there. So those are all good things. On the other hand, the T-14 has the smallest crew compartment, so that means any penetration there is going to cause more problems. There’s always a bigger IED.

Abrams has the vast majority of it’s ammo in the turret bustle, again with blow-out panels. There’s also hull stowage for six more 120mm rounds, also with blow-out panels. Alternatively, if lots of hull hits from RPGs are expected, this can be emptied of ammo without too much difficulty. It’s only six rounds. Abrams has the biggest protected volume, which is why it uses fancy exotic materials for protection, but it also makes it very difficult to wound everybody.

Leopard 2 and K2 both have blow-out panels for their ammo stowage in the bustle. However, both have a large hull ammo rack (about 20 rounds or so) next to the driver up front. Neither has much in the way of bulkheads isolating this ammo and neither has blow-out panels for this stowage. Protect that hull, guys. Crew compartments are moderately sized, and should provide reasonable levels of safety due to dispersion. Leopard 2 is bigger internally than K2, and gets a bit of a nod here.

Also, while not strictly a survivability thing, more room means easier to jam upgrades in. So in order of most upgradeable to least: Abrams, Leopard 2, K2, T-14.

Tactical Mobility
Also known in some cultures as “driving around the battlefield.” Everybody’s got a 1,500 hp engine. K2 and T-14 should have a significant advantage from being 10ish tons lighter than the latest Leopard 2 and Abrams variants. Both K2 and T-14 have had transmission problems recently, however. Abrams has the gas turbine engine, which comes with some maintenance advantages because of the fewer small parts, but it is a very thirsty beast. The latest Abrams tanks have protected auxiliary power units, but I don’t have much data on how much this improves fuel economy. The Leopard 2 has a pretty boring twin-turbo diesel powerplant that seems to work well.

Strategic Mobility
Once again, the lighter tanks get the points here. I would be inclined to argue that the difference doesn’t matter for the purposes of ship-based transport, but a win is a a win.

The bureaucrats always get to put in their two bits. NATO-related stuff is going to torpedo the notion of a T-14 buy. Also, it hasn’t even passed Russian trials yet, and we don’t like being early adopters of anything. Otherwise, it comes down to who your friends are. America may not sell you the best and latest depleted uranium stuff if they don’t like you enough. The Germans may not support you with spare parts if you go off to war with the stuff. South Korea is new on the market and doesn’t have the same ability to bundle deals like the others.

I did find the approximate unit cost of a K2 on the internet. Unfortunately, costs of the others are going to be determined by upgrade package, which is kind of a bummer. Also, for all tanks, a lot depends on the terms of the purchase and what other equipment is included (spares, weapons, training tanks, etc.). So I’ll go out on a limb and say that a similar level of outfitting is going to cost about the same for new builds, and I think that’s pretty reasonable. I can’t adequately work out who might offer the best package deal. However, unlike the other two western competitors, there are a ton of old Abrams tanks sitting in the American desert. So the Americans ought to be able to give you a better deal on overhauled and upgraded tanks, and they probably will be available faster. Also, given relative labor costs, there might be advantages to the K2 or the T-14.

So which do we go with? Whichever one can get us the best pricing deal and meets the political obligations. I don’t see much difference overall with any of the options, at least not in any way that matters. MBTs don’t really have different schools of thought like IFVs do, so which one is not a big deal. They all provide reasonable quality; it remains to get them in reasonable quantity. One might argue that the large stock of old Abramses gives that an advantage, if modifying is cheaper than buying new. Or one might argue for the extensive, already-trialled options list available for the Leopard 2, or the newer K2 with more standard features and lower lifecycle costs from having a smaller crew.

Borgundian Mechanized Infantry Loadout

Let’s get this started. I’m following my own challenge rules, which you can find here. We’ve made a bunch of decisions so far, so let’s get those out of the way. Oh, and all weights are going to be in pounds, because I’m an American. Divide by 2.2 to get weights in commie kilos.

Carbine: HK 416. I didn’t specify a barrel length preference then, but we’ll go with 14.5 inches. Comes to 7.69 lbs empty. We’ll also need ammo in that gun. Thirty rounds of 62 grain M855A1 or similar in an aluminum, 30 round magazine comes to 1.06 lbs. Per doctrine, we’ll need a suppressor and an optic. We’ll take an Aimpoint Comp M4 red dot (0.74 lbs with mount and killflash) and a Surefire 556RC2 suppressor (1.06 lbs.). Also, we’ll need an IR laser/illuminator, because battles don’t stop at night. My choice there would be the B.E. Meyers MAWL-DA. I don’t have a weight for this, so I’m going to guesstimate 0.5 lbs based on other, similar devices. Plus a sling, which is going to set us back about another quarter pound. All of that adds up to 11.3 lbs, which is kinda sucky, actually. Oh well. Lots of capability there, not much to be done about it. Quit complaining and drop and give me thirty.

Armor time. See here for why I picked what I picked. IOTV (and we’ll add the deltoid (fragmentation) protectors, but not the side plates) is 26.69 lbs for a size medium. Size medium ECH is three pounds. Ballistic Eyewear adds 0.15 lbs, foam earplugs add 0.1 lbs, and knee and elbow pads add another 0.4 lbs. An FM50 gas mask rounds out the protective equipment list, adding another 1.85 lbs. Total weight for protective gear is 32.19 lbs.

Ammo. Pretty straightforward. Six spare thirty round magazines. Two M67 frag grenades. And two smoke grenades. Something like the M18, but with added thermal obscurants. Six mags comes to 6.36 lbs, two M67s comes to 1.76 lbs, and two M18s comes to 2.38 lbs, for a total ammo load of 10.5 lbs. Which doesn’t seem like a lot, but remember the vehicle holds more.

On to comestibles. I’ll go into more detail on this elsewhere. Since these are mechanized infantrymen, they have a big armored vehicle to move them around and carry stuff like food and water in reasonable quantities. Only the essentials need to be carried. For the standard, temperate European operating environment, we think two liters of water is an adequate amount to carry on the person, and we can top this off as needed from the vehicle stores or resupply. For food, we really only expect the soldier to carry an iron ration with him. This will take the form of something like the US military’s First Strike Ration, which is a hot-pocket-like sandwich that supplies the calorie and nutritional needs for one battle day. A full two-liter camelbak-type1 bladder is 4.88 lbs, and a First Strike Ration is 1.95 lbs, bringing total comestible weight to 6.83 lbs.

There are a few other items we need to list out. There’s the IFAK, the Individual First Aid Kit. This is for two reasons. First, it means a soldier can perform some first aid on his buddy. Second, a medic can always find some basic supplies (tourniquet, pressure bandage, sterile gloves) when he needs them in a pinch. Add a pound. We also need to issue a knife. For knife fighting duties, I’d like a double-edged knife, like the Gerber Mk. II. However, most knife tasks are utility tasks for the modern soldier. For these, a tough single-edge knife will work better. Something like a Ka-Bar. Tough, effective, legendary. I have one and love it. Add another 1.23 lbs for a Ka-bar and sheath. And we’ll need some night vision kit. I’ve been going for the high-end, feature-rich stuff. No sense in stopping now. We’ll take the PSQ-20B, which gives us third generation image intensifying optics plus thermal optics in one rugged, two pound unit. At least the battery pack is detachable and can be affixed to the back of the helmet for balance. Finally, we’ll need a radio. The PRC-159 from Harris should do nicely. Compatible with the once and future frequencies, plenty of encryption, good battery life. With battery, it weighs 1.72 lbs.

Almost done, I swear. The standard poncho with liner is a really great piece of kit. It’s waterproof, surprisingly warm, and extremely packable. That’s my one concession to weather that might crop up unexpectedly. Obviously, coats are worn when you can expect bad weather, like say in the winter. 1.5 lbs for the poncho and liner. And we’ll add a multitool, because they are ridiculously useful little things. 0.6 lbs for that.

Let’s wrap up by looking at what we’re not issuing. Recall that this is a regular rifleman. He is not a squad leader. Therefore, he does not usually need navigation equipment so he does not have a lensatic compass, maps, or a portable GPS receiver as a matter of course. He might be given these things as part of a specific mission, and that’s fine. Spare batteries for the various electronic devices mentioned are carried aboard the vehicle normally. As a side note, just about all the devices here take AA batteries. Logistical commonality strikes again!2 Similarly, cleaning kits are generally expected to be carried aboard the vehicle. as are entrenching tools. Further, since they aren’t on soldier’s backs, we can issue full size picks and spades, not the lame folding versions.

All-up weight for our kit is 68.87 lbs. Which is on the heavy side, but about on par with other modern armies. Remember, the pack is normally left in the vehicle, so it’s not counted in the fighting load.

1.) I actually prefer the Source brand bladders.
2.) Did you expect anything different from me?

Cargo Helicopter for Borgundy

Between the two of us, Fishbreath is the clear rotorhead. And that’s fine. He really likes flying helicopters in sims.

I, on the other hand, am coming at this from the logistican’s perspective. I’m looking for a helicopter to haul stuff. It should be cheap. It should be reasonably modern. It should be readily available in numbers. Armored thrusts need lots of fuel, ammo, and food, and we need ways to get that materiel to the front. Let’s look at some big, ugly cargo helicopters. They’re probably no fun to fly, but they’re important just the same.

The most obvious choice would be the Mi-26. The biggest helicopter in mass production. Of course, being Russian, lower initial purchasing price comes with higher maintenance costs. That’s not a big dealbreaker though. Of greater concern is the revanchist Russian bear. Can they be depended on to supply spare parts in the future? The production line is also moderate. Besides, I’m sure Fishbreath is waiting to throw politics into this. Let’s dig deeper.

We come to that big, US Army classic: the CH-47F Chinook. It’s been in production since 1962. It can carry 55 men or just under 11 tonnes of cargo. Three machine guns can be mounted to cover soldiers. It maxes out at 170 knots. Plus, the price is reasonable. Not quite Russian cheap, but the service life is better, especially as far as engines are concerned.

Compared to other Western options, the Chinook is a real bargain. It’s almost one third of the cost of the big CH-53K, but carries two thirds the payload. Also, unlike the CH-53K, it’s in full-rate production now. It’s also a pretty common helicopter. This means spares are easy to come by, the secondary market can supplement our orders, and most importantly, that someone else (namely the U.S. Army) is on the hook for funding upgrades, not us.

There’s not much out of Europe that can lift as much as a Chinook can. The NH90 can’t (it’s more of an oversized Blackhawk), and it’s more expensive to boot. Plus, it’s been plagued with all manner of difficulties. Not that the Chinook hasn’t, but any such problems are long ago. Call me when the NH90 has been through several wars.

Like most modern helicopters, the Chinook has plenty of optional extras. High end digital controls built under common architecture principles are readily available, along with midair refueling equipment and modern composite rotors. There are three pintles (left, right, and rear exit doors) for mounting machine guns. It’s got a long, proven history of good service.

There’s not much more we could ask for in a cargo helicopter.

Borgundy Chooses a Destroyer

Picking a frigate was hard. There are lots of pretty good frigate designs out there, but none were quite what we want. The F100 came closest, so it got the nod.

Fortunately, choosing a destroyer is a lot easier. There’s one best option: an Arleigh Burke-class derivative. More specifically, the South Korean Sejong the Great-class destroyer, which is just an Arleigh Burke that’s a trifle bigger.

What’s so great about the Sejongs? Well, for one, they carry the excellent and proven Aegis combat system. This system was designed to defend American carriers from saturation attacks by Soviet antiship missiles. It’s great at tracking multiple targets and managing the engagement. The same system (albeit in smaller form) is on our F100-class frigates too. Hooray for commonality. Plus, they can plug into land-based IADS.

Where the basic American Burkes have 96 Mk. 41 VLS tubes, which can accommodate SAMs, VL-ASROC, and Tomahawk cruise missiles, the Sejongs have 128 such tubes. This is better than any destroyer afloat, and better than any ship afloat save for the Kirovs. And the Sejongs have better radar and battle management capability than the Kirovs.

The Mk. 41 VLS can accommodate SM-2, SM-3, SM-6, and ESSM SAMs, Tomahawk cruise missiles, and VL-ASROCs for an antisubmarine punch. Which is nearly everything you’d want a destroyer to be able to do. Note of course that ESSMs can be quadpacked four to a Mk. 41 tube. The rest of the armament suite is pretty conventional: sixteen Harpoon launchers, six 324 mm torpedo tubes, a RAM CIWS forward, a Goalkeeper CIWS aft, and a 5″ gun.

From a sensor perspective, the SPY-1D(V) is a pretty obvious component, dominating the sides of the forward superstructure. There’s the usual array of secondary radar systems for navigation, some infrared search and track units for passive scanning, a bow-mounted sonar, and a towed sonar array. All very nice, nothing here needs changing, so I’m touching nothing.

As for helicopters, the Sejongs have hangar space for two midsize units (SH-60s or similar). No shortcomings there. You could lash a third to the hangar deck if you really wanted.

Like the Burkes, the Sejongs are driven by a COGAG1 powerplant, which is simple and provides for excellent speed. It leaves something to be desired with regards to range, but I don’t care. Buy fleet oilers. Besides, we’re a mostly continental power anyway.

Really the only thing we’d do is swap the Goalkeeper for another RAM launcher. RAM is a more effective system than Goalkeeper. I’m not sure why the South Koreans called for both, but we won’t.

As for antiship missiles, as I mentioned in my piece about the F100s, I’d prefer an upgrade here, but I think it’s more important to ride the coattails of what the US Navy is going to buy. If they stick with Harpoon, they’ll keep it modernish, and it will be the best option because of the number bought. Alternatively, if they opt for NSM, its price will get better because of the large quantity purchased.

The Sejongs aren’t very “transformational” or “revolutionary”. We don’t care. They’re an improved version of a good, proven design. They have plenty of space for incremental, evolutionary upgrades. Plus, when the accountants come calling, you can point to obvious working capabilities today in addition to the hoped-for technologies of the future.

1.) Combined Gas (turbine) And Gas (turbine). So you have gas turbines for cruise and more gas turbines that you can use to also drive the screws when you need MORE POWER!

Borgundy Chooses A Frigate

Let’s get to picking our own Navy. Like Luchtburg, we’d like a nice, middleweight ship to handle a wide variety of tasks. There are lots of such frigates available, with a bunch of different price points and mission optimizations. Our pick is the Spanish Álvaro de Bazán-class, also known as the F100 class. For us, it represents the best set of compromises.

The F100s have the most powerful air defense missile suite for any frigate in the world, with a whopping forty eight1 Mk. 41 VLS tubes. 48! This is awesome. You’d no doubt expect them to be loaded with ESSMs and the latest SM-2 variant, and you’d be correct. The standard Spanish Navy loadout is 32 SM-2 Block IIIA SAMs and 64 RIM-162 ESSMs. That’s awesome. These missiles are backed up by a smaller version of the American Aegis combat system, and compact versions of the SPY-1 radar system. Very cool.

Having Aegis and the American SM-2/ESSM SAMs is really good from a commonality perspective. There’s no good reason for our Destroyer to be anything but an Arleigh Burke-class derivative (more on that to follow), and it’s really nice to have common radar systems and missiles with the Burkes. I’m a big fan of logistical optimizations where possible, and fewer distinct kinds of spares is always a win. Plus, since the US Navy also uses these missiles, they’ll probably be paying for upgrades, so we don’t have to.

The rest of the F100s loadout is pretty conventional. There are eight Harpoon missile tubes, six 324 mm torpedo tubes, and a 5″/54 gun. The F100 also has the usual bow sonar and a towed sonar array, though the towed array isn’t a very advanced model. It has a Spanish-built twelve-barreled 20 mm cannon CIWS system. This is one of the few things I’m unhappy with, but it’s also one of the simplest to remedy.

The F100s are driven by a CODOG2 powerplant, and have a crew of 250. Lots of navies are going with lower crews on their frigates, but I prefer a bigger crew. More men is better for doing manpower-intensive tasks like damage control. I’m very happy with this compliment.

Maximum speed is 28.5 knots, and the range is 4,500 nautical miles at 18 knots. Pretty typical Frigate stuff here. No reason to complain or specify changes.

As for changes, a few minor things when placing our order. We’d like to upgrade the CIWS to a rolling airframe missile based system, which should be pretty easy. We’d also like a more advanced towed array. Again, nothing hard there. Pretty simple changes. The F100s, like most Western combatants, use Harpoon antiship missiles. I’m not the biggest fan of those, but we’d have to be sure to do the conversion on both these and our DDGs. Not a huge deal, but something to watch out for. Verify compatibility with both before changing things. Or see if Harpoon is getting more upgrades. Presuming it isn’t, the NSM is an excellent alternative.

The only really notable shortcoming is the helicopter capacity. The F100 has a flight deck and hangar for one midsize helicopter like an SH-60. This is decent, but two would be better. Unfortunately, this isn’t something we can easily change. Still, the F100s provide excellent capabilities at a reasonable price. At least if you don’t stop and restart production lines and do a bunch of add-ons to the command and control facilities.

1.) Hilariously, this is the same number of VLS tubes as the Daring-class desroyers, even though those are almost half again the tonnage of the F100s. And called ‘destroyers’, even though they displace as much as a World War 2-era heavy cruiser.
2.) Combined Diesel Or Gas (turbine). So you can drive the screws with the fuel efficient diesel engines or the gas turbines for high speed but not both.