Tag Archives: militariana

Choosing and Buying an AEW&C Platform

Airborne Early Warning and Control (AEW&C, often colloquially called AWACS even though that’s a specific system for the role) is what separates the Serious Air Forces from the cut-rate posers. The idea is to take a large airframe, usually a jetliner, put a big radar on it, and then have a bunch of people sitting at computers to coordinate your sorties. All the benefits of GCI in a portable package!

A large part of picking a platform is determining your constraints. We’re looking for a land-based platform that’s relatively low cost to operate and can handle a good number of friendly and enemy aircraft. For this reason, we’re going to look at the larger class of AEW&C platforms.

As a brief aside, the smaller platforms are the Northrop Grumman E-2 Hawkeye, and a number of business jet derivatives. The Hawkeye is the only decent carrierborne AEW&C platform available, so if we were looking to build a naval air arm, that’s what we’d pick for the purpose.

The obvious large AEW&C platform is the E-3 Sentry. However, it is built on a Boeing 707-derived airframe, and these are no longer in production. No luck there. This problem also presented itself to the Japanese when they were looking for a larger platform to supplement their Hawkeyes in the 1990s.

Boeing obliged with the E-767, which puts the radar and computers from the E-3 onto a 767-200 airframe. The resulting widebody has space for up to 19 controller consoles, though I couldn’t find a great source on how many the JASDF use. It still uses the same radar as on the Sentry, albeit with upgrades. Also, as presently configured, it has no aerial refueling capability.

About a decade later, Boeing responded to an Australian RFP with a new design: the E-7A Wedgetail. This aircraft is based on the 737-700 airframe, and mounts Northrop Grumman’s Multirole Electronically Scanned Array radar. This is an actively scanned array, so it doesn’t need to rotate. It does posses aerial refueling capability, and is capable of mounting up to twelve controller consoles. At present, Australia has fitted ten consoles.

In terms of bigger platforms, these are the contenders. More consoles on the E-767 means it can coordinate more friendly aircraft. The more advanced MESA radar on the Wedgetail lets it refresh scans of regions faster and adjust power to focus on particular sectors with longer-ranged scans. It’s also able to handle simultaneous air and surface search. and the actively scanned array should be better at ECCM.

You can probably see where this is going. We’re opting for the E-7A Wedgetail. It’s even the cheaper option of the two. It’s telling that Wedgetail has had several export successes since being sold to the Australians. It’s also telling that the E-767 is absent from most of Boeing’s current marketing materials.

Choosing a Tanker Aircraft

Tanker aircraft are a requirement for any serious projection of airpower. And no one ever has enough of them. So let’s go get some.

Previously, the standard in aerial refueling was the KC-135, a close relative of the classic Boeing 707. Today, there are two different airframes available for tankers. There is the Boeing 767 and the Airbus A330. The 767 has two tanker derivatives: the KC-767, which is derived from the 767-200ER and is in use by Italy and Japan; and the KC-46A, which is based on the 767-200LRF1 and is in use by the United States and Japan. Note that the KC-46A is bigger than the KC-767, and carries more fuel. The A330-MRTT is the tanker derivative of the A330, and it is bigger than the KC-46A.

Now on to the choices. We know from the USAF tanker proposals that the 767 options have a lower projected life cycle cost than the A330-MRTT. For many export customers, this is outweighed by the greater fuel and cargo capacity of the Airbus. On the other hand, the 767s smaller size means it can operate out of smaller airfields. It is closer in size to the KC-135R, for those looking for a direct replacement, or just trying to picture sizes.

For us, we’d also point out the massive USAF buy of KC-46As as points in its favor, since that will mean the type will get more future upgrades and development money, if only to keep the US fleet going. Further, 767s are Boeing aircraft, and have a flight envelope not restricted by the flight computer. We prefer this.

So we’re going with the KC-46A. It’ll get the upgrades, and Boeing is still making 767s for the civilian market, which is a plus. We expect to be able to cannibalize ex-civilian airliners for parts and airframes for years after the type is formally retired (as was done with the KC-135), but the longer we can go before having to do this the better.


  1. Which is actually quite a bit different from the 767-200ER. 

Choosing a Jet Trainer

While not glamorous, jet trainers are an important part of an air force’s inventory. And with the US Air Force looking for a replacement for its venerable T-38s, I thought I might do likewise. As always, we’re looking for something off the shelf, which is doubly important for a trainer. A trainer’s most important evaluation criterion is cost; it should be cheap to buy and cheap to operate. It should, however, have a reasonably sophisticated cockpit so students can start learning on the sorts of instruments they’ll see on your front line fighters, as this will reduce training time there.

Cost is always a hard thing for the armchair strategist to analyze, however recently Poland sought a new trainer. Looking at their tender, we can get an excellent idea of relative costs, since Poland makes none of the three leading contenders. They compared the current model of BAE’s Hawk trainer, Alenia’s M-346, and Korean Aerospace’s T-50. All three are new-build aircraft, complete with modern comforts like glass cockpits. Costs for the bid (for a fixed initial number of aircraft) broke down as follows: M-346: 1.168 billion złoty, Hawk: 1.754 billion złoty, and T-50: 1.803 billion złoty. The M-346 won in Poland. It has also won a similar comparison in Singapore, but I don’t have their competitive bids to examine.

We might next ask if we ask anything more of our trainer. Some smaller air forces have trainers that are tasked to also be light attack aircraft. Were this the case, like any other tender we’d start discussing payload and compatible weapons fit. However, since we do not have such a role in mind for our trainer, we do not need to make such comparisons.

Since the M-346 is our lowest-cost option that meets our capability requirements, the M-346 is our choice.

Retro Air Force Procurement II: Lightweight Fighter Edition

It’s time for another classic showdown. Let’s look at two competing lightweight fighters. Specifically, the F-16 Viper and the F/A-18 Hornet. We’re going to keep this fair, so we’re generally looking at older Vipers, from back when both were in production. For a mid 90s procurement challenge, we’re going to have the F/A-18C/D Hornets go up against the F-16C/D Block 50/52 Vipers.

The F-16 was the fighter that (re)popularized the light fighter concept. It’s relatively small, has one engine, and a reasonable amount of capability. For a western fighter, it’s pretty cheap too. One engine means that the maintenance and support costs are going to be lower. Plus, it’s engine is common with that of the F-15, which is awesome if you operate the bigger type. It has possibly the most cockpit visibility ever. It can do any mission you please. It’s great.

The F/A-18 Hornet brings something a little different to the table. It’s got two engines, a navy-grade undercarriage, and some really fancy avionics for the time. The Hornet was small and advanced, but it cost more both to buy and to maintain. It’s also multirole, and was the first aircraft to shoot down enemy aircraft with missiles and complete a bombing mission on the same sortie in the Persian Gulf War. It’s also got great cockpit visibility.

So let’s break this down:

  • Cost: Viper. Duh. Viper is cheaper to buy, cheaper to fly. Has just the one engine. And it’s the same engine used in the F-15, which is a big bonus if you also operate Eagles, because then you don’t need to add another engine’s parts to the support list. And we do operate Eagles.

Looking at FY98 prices for both (using total program cost for each, because that’s what I happened to find), Vipers will run $26.9M and Hornets will run $39.5M.

  • Cockpit Systems: Hornet. The Hornet has three displays compared to the Viper’s two, and they’re bigger displays at that. The Hornet can run a moving map display too, which is really cool.

  • Engine Power: Viper. Even though it only has one engine compared to the Hornet’s two, the Viper has a lot more thrust, and a pilot can use this thrust to get out of trouble. Or take off quickly.

  • Low-Speed Handling: Hornet. The Hornet is a fantastically high-alpha jet. It performs well at low speeds and high angles of attack, so it’s a great turning dogfighter.

These two previous points mean that while the two aircraft fight very differently, they’re both very capable machines. Practical dogfight capability is a draw.

  • Targeting Pods: Viper. Both aircraft have access to the full range of NATO FLIR targeting pods like LITENING, which use infrared-spectrum cameras and lasers to identify targets. However, the Viper can also mount the ASQ-213 HARM Targeting System pod, which allows for identification of type, bearing, and most importantly range of enemy radars. Accurate range data allows the AGM-88 HARM to be used more effectively.

  • Weapons Fit: Tie. Both aircraft can operate a wide variety of ordinance, with no significant differences between the two.

  • Jamming Systems: Tie. Mostly because both can mount modern ECM pod options, and those are a pain to compare with unclassified data. So we’ll call it a wash.

  • Towed Decoys: Viper. The Viper can be equipped with the ALE-50 towed decoy system. While the bigger Super Hornet can also be so equipped, the standard Hornet cannot.

  • Naval Capability: Hornet. If you want to operate your fighters off of carriers, the Hornet is CATOBAR capable and the Viper isn’t.

  • Twin Engines: Hornet. Lots of Hornet export customers like the twin-engine reliability, since they have big, foreboding, sparsely-populated regions. Like with Naval capability, if this is important to you, the Hornet gains points.

  • Radar Range, Track Fighters: Viper. Based on totally shady open-source materials, I’ve found the maximum radar range to track a small fighter to be 80 km for the Block 50/52 Viper (with the APG-68(V)7 radar) and 72 km for the F/A-18C Hornet.

  • Radar Range, Track Bombers: Hornet. The same source gives the F/A-18C Hornet a maximum radar range to track bombers to be 150 km and the Block 50/52 Viper with APG-68(V)7 radar a maximum tracking range of 140 km.

  • Recon: Hornet. The Viper requires a camera pod for reconnaissance missions. The Hornet can replace the gun and ammo package with a reconnaissance camera package,

  • Pending Upgrades: Viper. In the above, I’ve compared what was flying in 1998 for both aircraft. However, both Greece and Israel were looking to buy some Vipers, and a number of improvements were offered. Specifically, the Apg-68(V)9 radar and removable conformal fuel tanks were available for F-16s ordered in 1998, and both of these features were purchased by the Israelis.

Okay, so where do we come down for Borgundy? We’re going to go with the Viper. The Viper provides excellent multirole capability while also being relatively low cost to purchase and operate. As a bonus, it can have common engines with our Eagle/Strike Eagle fleet. In the late 90s, the Viper is not only super popular in the export market, but it also continued to see development. It does a good enough job at everything we’d like it to do, while also being cheaper than the competition. It’s superior SEAD functionality is a bonus, as we take that mission seriously.

Note that while I picked 1998 as the year for this, mostly because I had price data for that year, the conclusion is similar for other Hornet/Viper matchups of similar vintage. The key differentiators that would push for a Hornet buy are naval aviation (or a naval/land common fighter project) or large remote spaces that would lead to a favoring of a twin-engine design. Neither of which applies for Borgundy, unless the United States wanted to sell one of their (likely conventional powered) carriers to us as well.

Mythbusting: The US Army and Autoloaders

Let’s tackle a persistent myth. The myth is that the US Army does not like autoloader systems for tanks. Proponents can point to the M60 having a human loader and the Abrams having a human loader, and then cite all of the nice things about having a fourth man in the tank when it comes time to post guards or do labor-intensive maintenance like fixing/swapping tracks, and ipso facto, the US Army loves human loaders. Clearly autoloaders are only for godless commie scum and cheese-eating surrender monkeys!

Of course, when we actually bother to look into the matter, those meddlesome facts get in the way of our carefully crafted myth. The US Army actually loves autoloaders. Let us examine the evidence.

Exhibit A is the MBT-70. This ill-fated project was a joint effort between the Americans and the Germans. It would end up being doomed by cost overruns and an inability to come to agreements on a number of key systems, including the gun and engine. However, one thing the Germans and Americans did agree on was that it should use an autoloader. Yes, that’s right, the wondertank of the 1970s embraced new ideas like an adjustable, hydropneumatic suspension and a fancy mechanical loader, just like the T-64. Since I like arguments supported by sources, and we’re busting myths here, one might consult a good source like Hunnicutt’s Abrams volume for details of the MBT-70’s design.

Exhibit B is the early design sketches of what would become the M1 Abrams. Again, we’re looking at Hunnicutt’s excellent work on the subject. The US Army originally wanted an autoloader for the Abrams, but then had it deleted to try to help sell Congress on the idea that the notional Abrams was economized and not a high-risk, gold-plated project like the MBT-70.

Exhibit C is the Abrams follow-on plans. Autoloaders galore. TTB had an autoloader. CATTB had an autoloader. The Abrams Block III proposals all had autoloaders. Want to upgun? That needs an autoloader. Want to isolate the ammo and the crew and reduce the turret profile? Gonna need an autoloader. Want to try to pretend you’re keeping the weight down as you add armor to deal with the relentless improvement of tank guns? Autoloader.

So there you have it. The US Army actually likes autoloaders.

On Army Shotguns

Shotguns are curious weapons. While they are possessed of limited capacity and are a pain to reload with any kind of speed, they have a number of useful features. While they were terrifyingly deadly in the trenches of World War 1, these days they tend to be specialized weapons, often using breaching rounds. Let’s talk about some of the different kinds of rounds one might want to shoot through a shotgun in a military context, and then we’ll talk models of boomstick.

Buckshot
Everyone’s favorite close-range manstopping load. Contrary to popular belief, you do need to aim with buckshot, and it will not send a man flying. Seeing as it consists of 9 pellets, each about .33″ in diameter, it will do an excellent job of ruining a man’s day.

Slugs
Hunters know there are a lot of fancy slugs out there for specialized purposes. The military guys tend to stick with pretty boring slugs. They’re still 0.72″ in diameter, and they’re absolutely great for wrecking stuff.

Breaching rounds
While buckshot and slugs can be used to smash the daylights out of hinges and locks, there’s a significant ricochet hazard. Breaching rounds are made from sintered metal pressed together, and are designed to safely destroy door hinges or locks with no risk of ricochet injuries.

Now, let’s get on to the guns themselves, and bring up Questions of Procurement. Let’s first note the obvious absence above: there are no “less lethal” rounds listed. This is notable mostly because it drives the constraints on our firearms. “Less lethal” rounds like beanbag rounds and rubber bullets don’t have enough of a propellant charge to reliably cycle most semiautomatic shotguns. The semiautomatic shotgun would then have to be manually cycled. While this is doable, if this is a key consideration then a pump-action shotgun is going to work better.

With any manually-operated shotgun, the onus is on the operator to not screw it up, and this is annoyingly easy to do. In general, absent a strong need to run less-lethal loads or a very severe budget restriction, the semiauto shotgun is the better choice, because it means there’s one less thing for the shooter to think about. There are few enough shotguns on the market that it suffices to ask a few more features questions, and that will determine our weapon.

First, let’s look at operating systems. Semiautomatic shotguns are either inertia-driven or gas-operated. Both can be reliable if well made. The simplicity and lighter weight of the inertia-driven options make them extremely popular with sportsmen. However, inertia-driven shotguns have the weight of the gun as one of the key parameters for their operation. So, adding weight to that gun, say by adding the lights, lasers, and optics that usually come on military weapons, can make them less reliable. For this reason, we’ll stick to gas-operated models.

Let’s next talk of magazines. Due to the nature of the (usually plastic) shotgun shells, making a reliable detachable box magazine fed shotgun is tricky. There are some who do it right now, namely Saiga and Molot.1 Both of these are Russian, and we run into the usual issues of NATO and politics. We might also expect Remington and Mossberg to introduce some new models of their respective Versamax and 930 shotguns to take advantage of the detachable box magazines which they have introduced on their respective model 870 and 590 pump-action shotguns. However, these are not yet out, and we in the Borgundian War department do not like to be beta testers. I would also honestly wonder if a more traditional, integral, tubular magazine fed shotgun would not be preferred for its extra handiness, since the shotgun is a specialized secondary weapon in military service.

Given the above, the choice is pretty obvious: the Benelli M4 (known in US Service as the M1014). It is highly reliable and tolerates long firing schedules and the general abuse of service well. We will make a few further catalog stipulations. Specifically, we’d like to opt for the M4 Entry model and the factory, three-position, collapsible stock. The three-position stock allows for easier use for those wearing body armor. The Entry model has a 14″ barrel, instead of the 18.5″ barrel on the standard model. Given that the shotgun is a secondary weapon, and the breacher also carries a carbine, we would expect the reduced weight and length to be preferable. Postulating a magazine tube of equal length to the barrel, this will also reduce capacity from 7+1 to 5+1. Again, because this is a secondary weapon used for special purposes, the loss of capacity is not a major issue.


  1. Of the two, Molot seems to have better QC. In both cases, competition shooters tend to tune the guns extensively, though a good deal of that is due to wanting to run their shotguns with the cheapest ammunition in Walmart. 

Harrier II short takeoff roll reference table

I was looking for this information as part of my still-forthcoming Harrier blog post, and couldn’t find it anywhere. So, here it is: a quick table of Harrier II short takeoff rolls by gross weight and headwind, assuming the Pegasus -408/11-61 engine, standard temperature and pressure (15 degrees Celsius, 29.92″Hg), and 0% datum hover performance.

Gross WeightTakeoff Roll (no wind)Takeoff Roll (20kt headwind)
20000 lb400 ft.275 ft.
22000 lb450 ft.325 ft.
24000 lb550 ft.375 ft.
26000 lb725 ft.500 ft.
28000 lb1025 ft.750 ft.
30000 lb1350 ft.1000 ft.

Sources and Charts

These numbers come from the Harrier II NFM-400 manual. Please don’t share the download link off-site; it’s a fairly large PDF, and we’re pretty shoe-string budget-wise.

The relevant charts are reproduced below.

hover chart

To use the hover capability chart, enter from the bottom, beneath the JPT half of the chart, from the appropriate ambient air temperature. Move up to the 0-degree datum line. Then, enter the chart from the bottom, beneath the RPM half of the chart, from the ambient air temperature. Move up to the RPM limit line. From the lower of the two intersections, move right to the hover performance 0% datum line without following the adjustment guidelines.

The JPTL adjustment values are maintenance-provided and outside the scope of my table. To use them, move up to them rather than to the 0-degree datum line. The hover adjustment guidelines are also out of scope. To use them, after moving right to the 0% datum, follow the guidelines up or down.

For 15C, neither JPT or RPM limits performance. Move across the chart to the 0% hover performance datum and read from there: 21,000 lb.

rotation chart

To use the nozzle rotation airspeed chart, enter from the left using the corrected hover value from the hover chart. Move straight across to the 29.92″Hg datum. Move parallel to the guidelines to the ambient pressure.

From there, move straight across to the takeoff gross weight. Stop at the intersection, move directly downward, and read the nozzle rotation airspeed off the bottom of the chart.

For a 22,000lb gross weight, start at 21,000lb, the corrected hover weight, and move across to the 29.92″Hg datum. Since the pressure is 29.92″Hg, continue moving directly across to the 22,000lb gross weight line. At the intersection, move down the chart to find the nozzle rotation airspeed of about 63 knots.

takeoff chart

To use the takeoff chart, enter from the top left using the nozzle rotation airspeed calculated before. Move horizontally to the 29.92″Hg datum, then move parallel to the pressure guidelines to the ambient pressure. Move horizontally to the start of the temperature guidelines, then parallel the temperature guidelines to the ambient temperature. From there, move horizontally to the curved line to the right. At the intersection, move down to the zero-wind line at the top of the ground roll chart to find the 0-knot takeoff roll. Follow the solid line down the chart to the appropriate line to find the headwind takeoff roll.

To continue the example, enter the chart at 63 knots and move to the pressure baseline at 29.92″Hg. Move horizontally left to the start of the temperature guidelines, and parallel them to the 15C baseline, at about 66 or 67 knots. Move horizontally to the reflector line, then move vertically to find the takeoff roll of roughly 450 feet. Parallel the solid headwind guidelines down to a 20-knot wind to find the headwind takeoff roll of about 325 feet.

Brief Comments

Experience with DCS Harrier suggests that these numbers include a good deal of margin. I have no trouble getting off the Tarawa deck with at least 200 feet to spare, even at loads north of 30,000 pounds. These are, however, the by-the-book numbers.

Configuring a Leopard 2 for Borgundy

As mentioned previously, the Leopard 2 has a ton of available upgrade options. So let’s go to our local KMW Dealership and select our optional extras. Since I’m sticking with various catalog options, I’ll list the model or project where you can find the option.

We’ll start with the turret, since there are a few different configurations available. There are basically no old stocks of Leopard 2A4s that people are looking to part with, so we’ll have to go with new-build units. We’ll also select the gunner’s sight mounting above the horizontal axis of the main gun, as on the Leopard 2A5 and subsequent models. We’ll also opt for the lengthened turret bustle, as seen on the Strv. 122 and some other exported models. We’ll also opt for the electric turret drive for both traverse and gun elevation, again, as pioneered on the Leopard 2A5.

One of the key things that got the Leopard through our gauntlet of armchair1 testing is the gun. We’ll opt for the Rheinmetal 120mm L55A12 smoothbore, the finest gun in the west.

Now, let’s talk armor. As always, we’re using the best and latest composites. Our inserts will be those of the German Leopard 2A7. We’re going to opt for the standard 2A5+ wedge applique on the turret front. We’re also going to take the roof protection kit that the Swedes got on the Strv. 122. We’re also opting for a glacis applique package, again with those modern composites. We’ll add the armored housing for the commander’s sight that’s popular on some of the later export models, including the Strv. 122. And of course, we’re going to opt for spall liners.

We’re not done. There are a bunch of other supplemental packages that we can add or remove as needed. There’s a mine protection kit that was first seen on the Leopard 2A6M. There’s no good reason not to get the belly plate these days. And then there’s the flank protection. The skirts come in two sizes, with the older ones being about 150mm thick and the newer ones about 325mm thick. We’re going to take the newer, thicker ones. We’ll also take advantage of the mounting points on the sides of the turret in the newer Leopard 2 models to mount some nice AMAP modules for side protection.

Our armor changes listed above will necessitate some other, minor structural changes. The roof protection setup means we’ll need to redesign the hatches on the turret roof. The new ones are slide-opening. Again, this can be seen on the Strv. 122 or the Leopard 2HEL. We’ll also opt to add the roof storage boxes for the crew’s carbines that the Danes opted for on the Leopard 2A5DAK. Internally, we’re going with shock mounts and a protective kevlar cover for our ammo rack. This will protect against splinters and provide some measure of blast dampening, but will reduce reserve ammo capacity from 27 to 21 rounds.

On to the sensors! For the commander, we’ll select the PERI R17A3 sight, which comes with the Attica GL 3rd Generation FLIR system and an eye-safe laser rangefinder. This is a pretty standard addition on the Leopard 2A7 and related models. We will also put the Attica GL into the gunner’s sight, replacing the older WBG-X FLIR. We’ll also take the opportunity to upgrade to an eye-safe laser rangefinder for the gunner. Further, like the Leopard 2HEL, we’ll add a crosswind sensor for improved targeting system efficacy.

We are not done. There are many more internal systems to pick. We’re going to go back to the Bundeswehr’s A7 and A7V for some of the other systems in the turret, specifically the ultracapcitors and the integrated air conditioner/NBC system. These are in the right rear portion of the turret bustle, replacing the turret hydraulics on older model Leopard 2s. We’re also going to use the upgraded Steyr M12 APU, capable of generating 20 kW. We’re going to round out the electronic systems suite with a battle management system and the SOTAS-IP Communication system.

Because RWS are the hot, not-so-new thing, we’re going to fit one, namely an FLW 200 RWS with an M2HB heavy machine gun. This will replace the loader’s machine gun mounted on the roof.

We’re also going to select a few extras to provide more protection. These are Saab’s Barracuda multispectral camouflage system and Rheinmetall’s ADS Gen 3 active protection system. Barracuda makes the tank harder to spot visually, and reduces the thermal signature. And ADS is a fast-reacting, relatively3 safe for nearby infantry active protection system to intercept those pesky rockets.

And there you have a Leopard 2A7 BOR model. It’s pretty great. I’m also going to talk briefly on support variants, since the Leopard 2 has several. We’ll want an armored recovery vehicle and an armored bridgelayer. For bridging, we’ll go with the Panzerschnellbrücke Leguan, and for armored recovery, we’ll go with the Wisent 2. The Wisent 2 also comes in an armored engineer vehicle version, and we’ll buy those as well.


  1. It’s a very comfortable armchair. 
  2. Ordered by the Bundeswehr and in production as this goes to press, so I can have some too. 
  3. Still dangerous, but tests show an ADS interception of an RPG-7 rocket is less dangerous than the detonation of said RPG-7 rocket. 

US Army Mortar Improvement Request

The US army has finally decided to improve it’s mobile mortars. They have announced their goals to develop a turreted mortar system for their vehicles, with a completion target of 2021. Let’s break down what they’re looking at:

  • Caliber: 120mm
  • A manned or unmanned turret
  • Autoloading system must accomplish loading rounds from ready rack into the breach.
  • Ideally all ammunition handling would be automated
  • Vehicle should be able to stop moving and fire within one minute of getting a fire mission
  • Project will investigate being able to shoot on the move
  • Maximum rate of fire (sustainable for one minute): 16 rounds/minute required, 24 rounds/minute ideal
  • Sustained rate of fire: 6 rounds/minute required, 12 rounds/minute ideal
  • System should have a direct-fire capability
  • System should be compatible with all existing 120mm mortar ammunition
  • Maximum range should be at least 5 miles
  • Minimum range should be 220 yards (direct fire)

Patria’s NEMO system comes close to meeting the above requirements, but would need some work to meet the short-term maximum rate of fire requirements. AMOS should be able to do the rate of fire goals given its twin barrels. My one worry is that the perfect would be the enemy of the good enough. Big Army should just pick an off the shelf system (probably the reasonably priced NEMO) and start slapping them on Strykers and AMPVs and call it a day. Have a couple beers and some wings in Alexandria. Any such turreted system is going to be a significant improvement in survivability for the mortar crews, and should also provide improvements in effectiveness. Don’t overcomplicate this.

More on the Namer

We picked the Namer as our IFV of choice. But I have more to say about it, and a few things I might like to tweak. First, let’s take a good look at the turret.

namer ifv turret

This is from a presentation, so it’s a trifle incomplete. We can see most of the mechanisms though. Note that the popup missile launcher has a pair of MATADOR rockets installed here. These could also be Spike 2 ATGMs. There’s also no indication (at this stage) of an autoloader for the Trophy install, or any indication of the autoloader assembly for the mortar.

Still, it’s a great turret. I really like the firepower in the Namer IFV. We could debate caliber until we’re blue in the face, but 400 rounds of 30x173mm plus two rockets or missiles is very solid. However, I’m a good armchair strategist, and I can always find things I might like to tweak given the opportunity. We’ll go through these in order of ease of doing.

  1. Side skirts. The skirts on Namer aren’t very thick. Thicker skirts would help protect against incoming RPG fire better. Given the vehicle’s size, this is an obvious threat vector, so let’s armor up.

  2. Engine change. The Namer currently uses the AVDS-1790, which generates 1,200 hp. We also know the Namer is very heavy. The CEV version (which has Trophy but no turret) weighs 63.5 tonnes, and the turret is going to mean even more weight. To improve mobility, we’d like ours built with the MTU 883 engine, which makes 1,500 hp. This is the engine used on the Merkava 4, so this change should be pretty easy to do.

  3. Glacis work. Due to being a newer, liquid-cooled engine, the MTU 883-based powerpack is smaller than the one built around the AVDS-1790. A smaller powerpack means there’s more room for glacis armor, so let’s fill the void. There is no such thing as too much armor.

  4. APS change. I like Trophy. It’s combat proven. But IBD Disenroth1 has a system called AMAP-ADS. The Gen 3 version reacts considerably faster than Trophy (0.56 ms for ADS compared to 300-350 ms for Trophy). In Swedish tests, ADS also has a smaller danger space for nearby infantry. Further, in the turret picture above, we note a lack of reloads for Trophy. We can fit a whole bunch of ADS effectors on the Namer, and we’d like to do so.

  5. Additional missiles. Given the deletion of trophy from the turret, it might be nice to see if we could get more missiles in there.


  1. Now a subsidiary of Rheinmetall.