Tag Archives: procurement

BVRAAM

The Beyond Visual Range Air to Air missile is a critical munition in any air force arsenal. At first it might seem easy for a western air force. Call Raytheon, order up the latest version of the AIM-120 AMRAAM, and then call it a day and have a beer. Is it really that easy? Let’s take a look.

The AIM-120 AMRAAM was the world’s first missile with an active radar seeker, and it has become the world standard. It was designed to replace the AIM-7 Sparrow semi-active radar homing missile. It features improved range, and a way-cool seeker. The Sparrow’s semi-active radar seeker requires an external source of radar to illuminate the target, usually the firing aircraft. So the aircraft has to keep flying more-or-less towards the target while the Sparrow is in flight. This strongly limits the evasive maneuvering possibilities of the launch aircraft. If the radar lock is broken, the missile becomes a useless ballistic projectile.

The AMRAAM is different. It has an inertial guidance component for the initial run towards the target. It can be updated by radar from the launch aircraft. Then, when it gets close enough to the target, it turns on the active radar seeker. This has it’s own radar, so the launch aircraft is free to turn away from the target aircraft. It’s a big improvement. The seeker can also home on jamming if the target aircraft tries to jam it.

Okay, so that’s cool. The rest of the AMRAAM is pretty typical: it’s a single-pulse solid fuel rocket. So once you light it, it burns until the fuel is gone, and only burns once. This means that during most of the intercept it’s coasting. There are also dual-pulse rockets which relight later, which helps chase down a maneuvering target. But those are more expensive, and while there’s been a lot of discussion about putting one on the AMRAAM, that still hasn’t happened yet. The AIM-120D gets its improved range from improved guidance algorithms and GPS-aided navigation. Cool. The question becomes: can we do better.

We’ll need to take a brief interlude here to define a term: the no-escape zone. This is the range in which a target can’t escape a missile by outrunning it. Outside of the no-escape zone, a fighter can turn away and light afterburners and the missile will be unable to catch it. Within the no-escape zone is not a guaranteed kill, it merely forces the fighter to maneuver aggressively to force the missile to miss.

Anyway, the Europeans have designed something nice for once in an effort to do better, and are actually getting it to market in a sort of timely fashion. This is the MBDA Meteor AAM. It’s noteworthy for two reasons. First, it has a datalink for midcourse guidance updates from the launch aircraft, which improves the accuracy of the midcourse phase of the flight at longer ranges. More importantly, it has a snazzy new engine. This is a “throttleable ducted rocket” also known as an “air-augmented rocket,” but it’s easiest to think of it as a hybrid solid-fuel rocket/ramjet motor. Like a rocket, it can give useful thrust from zero speed. Like a ramjet, it can also pull in outside air, and has no moving parts. This means it gets way more burn time from its motor, which means that it has a much bigger no-escape zone. Even the way-cool guidance algorithms in the -120D can’t get around the fact that the Meteor has a more advanced engine that provides more oomph. The Meteor isn’t that much bigger than the AMRAAM either, at least as far as length and weight. It might take some doing to get it certified for internal carriage on the F-35 though.

So where does that leave us? The Meteor is the better missile, with the bigger price tag. We’d say it’s worth it though, especially to get those early shots in on Flankers. We’ll have to spend some money to get it qualified on legacy platforms, but that’s totally worth it for the leg up on potential enemies. It’ll be interesting to see if the AMRAAM ever gets that improved motor.

CAS Aircraft Throwdown: A-10C vs. Su-25T

Fishbreath and I have spent lots of time studying these aircraft and flying them in DCS. They represent two different philosophies for air support, the clash between ‘push’ from the top and ‘pull’ from the bottom. Plus, they represent some different design philosophies. We’ve talked about these two planes already, but let’s break everything down and see how they compare directly. Features are in no particular order.

WEAPONS:
We’ll break these down by type, and then tally up an overall score for this section.

GUN: A-10C
This is no contest. The A-10C has the GAU-8A, which is the most powerful flying gun around. It’s got better AP rounds than the GSh-30-2, and more than five times as many rounds in the magazine (1,174 rounds as opposed to 250). The A-10C has some nifty pilot aids to stabilize the aircraft on a gun run too, but the Su-25T just leaves you to your own lack of skill. Interestingly, the Su-25T also doesn’t have enough dispersion built into it’s gun. The A-10’s designers recognized that being exactly on target is very hard, so the gun has some built in dispersion to give you a margin of error, which makes it a lot easier to hit things.

ROCKETS: Su-25T
This is also no contest. The Russians like their rockets, and have a wider variety of sizes available. Even if we restrict to the standard small rockets (Russian 80mm S-8 and American 70mm Hydra 70), the Russians have a wider variety of warheads available, including exotics like thermobarics.

UNITARY BOMBS: A-10C
Both have the ability to drop laser guided bombs, plus plenty of dumb bombs. The A-10C can drop JDAMs (GPS guidance). The Su-25T can’t drop Russian GLONASS-guided bombs, but they do have the ability to drop bombs with the Electro-optical guidance system (they have a -Kr suffix). That said, the A-10C has glide bomb options, and the Su-25T doesn’t, giving the ‘Hog some excellent cheap standoff attack options. Glide bombs rock.

CLUSTER BOMBS: A-10C
Both have a lot of cluster bomb options, but (for now, at least), the Americans do cluster bombs better. The CBU-87 doesn’t really care at what altitude/airspeed it’s dropped at, and drops bomblets that combine antipersonnel, anti-armor, and incendiary effects in each bomblet. That’s pretty cool, and is a big logistics simplifier. It’s compatible with the wind-corrected munitions dispenser add-on kit, which isn’t really guidance, but it does ensure that the bomb dumps the submunitions where you intended, rather than get all mucked up by the wind. The CBU-97 Sensor fused weapon is also pretty sweet. It’s designed to scatter smart anti-tank munitions that will search for a tank beneath them as they fall, and then fire an explosively-formed penetrator at it if a tank is detected. The Russians don’t have such fancy anti-armor measures, and they don’t have fancy wind correction kits. They also don’t combine effects frequently in their bomblets. And altitude matters for the dispensers.

MISSILES: Su-25T
Given how much tech the Americans like to fight with, this might be a shock. Both aircraft can carry older WVR AAMs on the outermost pylons that can’t do much else. The A-10C can also carry a bunch of Mavericks, and that’s about it. The Maverick is a great air to ground missile, with a variety of guidance options. The Su-25T can carry the Kh-25 “Maverickski”, and the Kh-29, which is something like a bigger Maverick with a bigger warhead. It can also carry 16 9K121 Vikhrs ATGMs, so it ends up with more anti-tank capable missile capacity. You can also add an ELINT Pod and antiradiation missiles for SEAD missions. The A-10C has no such capability. The A-10C would certainly benefit from being able to sling Hellfires.

WEAPONS SCORE:
A-10C: 3
Su-25T: 2

MOBILITY: TIE
I’m not actually going to break this one down. Either way you look at it, it’s a tie. The Su-25T is faster. The A-10C has more range. The Su-25T was designed to be sent out from a forward airbase towards a given concentration of enemies. So it’s superior speed is more useful in that doctrinal role. It’s designed to go out, kill some stuff, and go home. Loitering is not called for, so plenty of range isn’t needed. The A-10C was intended to loiter near the battlefield until called for or it’s out of ammo. So range is good, because range translates into loiter time. Since it’s supposed to start in the air close to where the action is, it’s inferior speed isn’t a great handicap. Each does one thing better, and each has an attack doctrine built around its strengths.

DURABILITY: TIE
Both have a whole bunch of design features to make them tougher. Absent some kind of common destructive testing, this one is too close to call.

OTHER:
The category for random things that I can’t think of another place for.

LOCATING TARGETS: A-10C
This one’s almost not fair. The A-10C has a bubble canopy to provide good, all-around visibility. Plus, the A-10C has the LITENING pod, and this makes the Shkval look like a cardboard tube duct-taped to the cockpit. The LITENING has way more zoom, more resolution, a nearly-all-around field of view, and remembers what you were looking at if you have to make some turns, or if some part of the plane gets in the way during a turn.

SCORE TALLY:
A-10C: 6
Su-25T: 4

So the A-10C is better.

Or at least, in this simplified metric evaluation, the A-10C is the better plane. Really, the more relevant question is “Which doctrine do you prefer/buy into?” and to a lesser extent “Whose weapons are you buying?” since those questions will determine which will work for you, and if you’ll have to pay a bunch of annoying weapons integration costs and do some testing. Better electronics would go a long way toward improving the Su-25T, especially in the target acquisition phase.

MBT LAW

There once was a time when the shaped charge warhead was triumphant. The bane of armor engineers. Tanks1 were designed with speed in mind, since it was thought infeasible to protect them against the shaped charge weapon. And there were plenty of formidable anititank weapons to go around, both light and otherwise.

Here, I’m defining “light” as “designed to be operated by one man”. This will become important in a bit.

Of course, in the 1970s, we saw the development of composite armor arrays and explosive reactive armor, both of which made life much harder for the antitank weapons designer. Especially the light antitank weapon designer. The weapons got heavier. The rockets got bigger. Armor got thicker.

Now here we are. Anno Domini 2016. Among the latest and most formidable “light” antitank weapons, we have the RPG-29 and the Panzerfaust 3. We’ve talked about these before. They have tandem warheads. They weigh 40-odd pounds ready to fire. They cannot be relied upon to penetrate the frontal armor of modern tanks. The latest models of Abrams, Leopard 2, and Challenger 2 can all take these rockets and keep coming. I do not yet have good unclassified armor estimates for T-14, but I presume it can do likewise.

From the side aspect, the problem was simpler. Well, sort of. You still have to hit something important. In Operation Iraqi Freedom, American tankers noted that while an RPG-29 could penetrate the side armor of an M1A2, this was not likely to stop the tank. You see, the Abrams is particularly large, and this large armored volume makes it hard to wound enough crewmen or damage enough systems to get the tank to go away when you attack from the side.

To make matters worse for the infantry, armor designers haven’t rested. The frontal armor is thicker (as you’d expect). New side armor kits are available that will defeat the RPG-29.2 Interestingly, this can be done not only with explosive reactive armor arrays, but also with composite armor arrays. And this without making the tank stupidly wide or massively overweight.

So if you’re designing a light antitank weapon, you’re facing a bit of a conundrum. You need a bigger warhead to punch through better armor. You’re already hitting the weight limit for a weapon that can feasibly be carried by one man. Something has to give.

Well, if that something is “cost”, a solution could be found with GUIDANCE! This is the same idea as Eryx, but way better executed. Call Saab Bofors, and ask for the MBT LAW.

The MBT LAW weighs 12.5 kg, and is a single-shot disposable weapon. So it’s heavy, but competitive with RPG-29 and Panzerfaust 3 as far as weight goes. And, unlike those two rockets, it can actually do what it says on the tin, namely kill tanks. It does this by utilizing a fire-and-forget, overflight-top-attack guidance system and a pair of explosively formed penetrators. These fire sequentially, just in case the roof is loaded with ERA.

Additionally, the MBT LAW is designed to be used in confined spaces without ill effects. It’s just like what’s used on another excellent Saab Bofors product, the AT4-CS. The idea is that there’s a salt-water based countermass in the back of the tube to absorb the backblast, so you can shoot it in a confined space without turning into some cheap barbecue.

Again, the obvious downside is cost, and that’s painful. It’s on the order of 25,000 €, which hurts. That’s about twenty times the cost of an AT4. So where the RPG-29 and PzF 3 strongly encourage a high/low mix, the MBT LAW makes it mandatory. On the other hand, it will actually do what you ask of it and provide a short-range, effective antitank option.

Range on the MBT LAW is 25-600 m. On the one hand, this compares favorably to weapons like the Panzerfaust 3 or RPG-29, which are theoretically useable out to 600 m, but are very difficult to score hits with at that distance if the target decides to move. On the other hand, the cost and weight of the MBT LAW might also cause you to compare it to weapons like the FGM-148 Javelin or Spike-MR ATGMs. Both are fire and forget, and while they have longer minimum ranges, they also have much longer maximum ranges. They’re also more expensive, and are operated by a couple of men.

So now we start thinking about force disposition, system costs, and how our forces move. For mechanized units, I really, really like the American practice of tossing a Javelin in the back of the IFV. And if you’re gonna do that (presumably with some lighter antitank weapons like AT4s to handle the demoliton uses), there’s not much point to also tossing in an MBT LAW. I could see an argument here for using the MBT LAW instead for the dismounts, but the vehicle will handle the weight, and I’m a big fan of ATGMs on IFVs, so we can get some supply commonality that way.

For lighter infantry units, the modest weight savings might make the MBT LAW a really good buy, especially if you’re willing to accept the range. That’s a question for your expected theaters of operations.

1.) E.g. the AMX-30 and, to a lesser extent, the Leopard 1
2.) I know of such kits for the Challenger 2, Abrams (the TUSK kits), and the Leopard 2.

Resurrected Weapons: CVAST turret

In my article on the many Bradley Variants, I mentioned that there have been a number of efforts to upgrade the gun on the Bradley, including utilizing the 35 x 228 mm caliber. One such design was the CVAST1 demonstrator. I found a good bit of detail on it in a 1986-1987 copy of Jane’s Armour and Artillery.

As a brief side note, I can’t recommend old copies of the Jane’s Information Group yearbooks enough. They’re packed with information, much of which you can’t get anywhere else, and while prices on the latest copies are eye-watering, older ones can be had for a song. This one came to my door for under $10, shipping included.

Anyway, the turret. The CVAST Bradley (there was also a CVAST turret on an M113) was designed around an ARES Talon 35 mm gun. This was a dual feed cannon, and it was compatible with all existing Oerlikon stocks of ammo, plus an (at the time) brand new APFSDS round. The CVAST turret was a “cleft turret” design, which put the turret in two separate manned sections with the gun in between. The gun mechanism itself was in a compartment behind the two crewed sections. This allowed the gun to have an elevation range of -10 degrees to + 60 degrees, and not have to worry about the turret roof getting in the way (or making the Bradley taller still) The commander sat on the left, and the gunner sat on the right. Elevation and traverse were all-electric. The 35 mm gun was fully stabilized.

The CVAST turret had an interesting wedge-shaped front and sides, and provided better protection than the then-current M2A1 turret (especially on the side where the TOW launcher took up some space for armor on the basic model). The CVAST turret could still mount the two-tube TOW launcher on the right side, but the launcher no longer folded down. It could pivot 45 degrees for loading, but remained in the horizontal “fire” position of the folding launcher during transit.

The CVAST turret matched the then-current Bradley for electrics and fire control components, having a thermal viewer, integrated laser rangefinder as well as cant, crosswind, air temperature, and propellant temperature sensors. A fully computerized fire control system was also provided. No independent commander’s thermal viewer was fitted yet (the M2 would not get this capability until the -A3 model was introduced in 2000).

Here’s where it gets very interesting. Listed ammunition capacity for the CVAST turret was 500 rounds. Five Hundred Rounds of the big 35 x 228 mm. Outstanding. That’s the same capacity of a BMP-2, but in a much bigger caliber. I’m not quite sure how this was done, since I don’t have internal turret diagrams. But there you have it. 500 rounds. Damn.

And that pretty much spoils what I think of the turret, doesn’t it? More rounds and bigger rounds? Sign me up. Even if we have to redo the optronics to bring them out of the 80s and augment the armor protection. I don’t care.

Verdict: Approved for Production by the Borgundy Armored Systems Board

1.) Combat Vehicle Armament System Technology

Infantry Protective Kit

Editor’s note: Back to the land stuff in time for Thanksgiving (at least here in America). Enjoy the long post to make up for all of the naval stuff

Let’s talk protective stuff for the infantryman. There are a mulitude of threats on the modern battlefield, including bullets and shell fragments, and protection from these threats has been a pretty consistent goal for armor designers. Of course, designing for those two threats is very difficult. Fragments are small and do not deform, and can be stopped by kevlar or similar materials. These materials are relatively soft and flexible, but they are heavier than normal fabrics used for uniforms. Bullets, or more specifically, rifle bullets, are a thornier problem. To stop those, you need ceramic plates and a padded backing. These ceramic plates are rigid (of course) and weigh several pounds apiece, so a stormtrooper-looking ensemble is not very practical. Any body armor also has to work with a soldier’s load bearing rig, which carries his ammunition and other stuff. So let’s start at the top and work our way down, shall we?

First, the helmet. We’ve come a long way since the Adrian helmet of 1915. Our helmet of choice is the American Enhanced Combat Helmet1 We’re going to break this one down by components. Let’s start with the shell. Our helmet shell is made of ultra-high-molecular-weight polyethylene (UHMWPE), and comes in a MICH-type2 cut. To understand what I mean by the MICH cut, we’ll have to step back a bit.

The Adrian helmet was the first modern combat helmet, and was based on the shape of firemen’s helmets used in Paris. When the Germans finally came around to the concept, they looked through medieval helmets to come up with the Stahlhelm design. This was the best shape of all helmet designs in World War I, but nobody wanted to look like the “evil Hun”, so they stuck with their own shapes. It was revisited for PASGT,3 when the US Army was making a new kevlar helmet. The Stahlhelm shape really does protect more. It’s just better than the M1 shape it was replacing. So the PASGT helmet was basically a Stahlhelm in modern kevlar. Cool. Except it’s kind of annoyingly large. When a soldier wearing the Interceptor Vest (early 2000s kit), went prone, the collar on the vest would push the helmet down so the brim went in the wearer’s eyes. Also, if you wanted to wear a headset and a helmet, you were out of luck. So the MICH-cut is a trimmed PASGT-cut, to accommodate larger armor vests and communications headsets.

Okay, so that’s the shape. Why not just get a MICH helmet? Because of that UHMWPE stuff. The ECH is thicker than earlier American composite helmets, but it can stop a 7.62x51mm rifle round at point-blank range. To be clear, the regular M80 ball ammo, not the AP stuff. Still. Seven point six two millimeter. Full. Metal. Jacket. And it’ll stop it. That’s freaking awesome. Plus it’s really resistant to fragments. In testing, the test gun was unable to get the fragments going fast enough to make 50% of them pass through.4 So against basic rifle threats and fragment threats, the ECH has you covered.

Internally, the ECH has pads and a four-point H-back strap to hold it on your head, like a bicycle helmet. This is more comfortable than a chinstrap and won’t fall over and hit you in the face if you bend over. So medics will keep their helmets on. Again, this design bit was cribbed from the earlier MICH helmet. A nape pad can be fitted to the ‘crossstrap’ of the H for some added comfort and fragment protection for the base of the neck. The pads are the Team Wendy Epic Air pad kit using their Zorbium foam. It’s a three-piece pad setup that comes in a few different sizes for comfort and providing adequate standoff between the helmet and the head. The Epic Air pads come with air channels to help with cooling.

There are a few other accessories of note. There’s a bracket on the front of the helmet to mount night vision equipment. Fabric helmet covers in standard Borgundian camouflage5 patterns are available, and come with velcro to mount IR recognition patches if desired. A counterweight can be fitted to the back of the helmet to offset the weight of night vision equipment.

Perfect. So that’s the head taken care of. On to the torso. Right now, inspired by foot operations in Afghanistan and a general desire to emulate SOCOM6, plate carriers are all the rage. Simply put, a plate carrier carries hard armor plates (duh) to protect your vital areas from getting perforated from rifle fire. This means front, back, and sometimes side plate pockets of your choice. The alternative is an armor carrier, which has some amount of soft armor (e.g. kevlar) to protect most of the torso from artillery fragments in addition to plate pockets. This is a pretty simple amount-of-protection v. weight tradeoff. What’s your expected threat? In Afghanistan, you’re walking a lot, so weight really sucks. Most of the threats are dudes with rifles. So you want rifle protection, screw the rest. In Iraq, you ride around in vehicles, and IEDs (and their friends high velocity fragments) are a big threat. Plus dudes with rifles. So you want plates and soft armor.

We’ve spilt a lot of virtual ink on IFVs. We’re pretty clearly a heavily mechanized force. And our expected operating theater is good old Europe in a conventional throwdown. I’m old school like that.7 We can expect plenty of artillery threats in addition to dudes with rifles. So armor carriers it is! They won’t provide immunity from shell fragments, but they do a great job of saving lives.

Previous drafts of this post had a highly optimized choice to shave off the last few ounces, but I’ve since reconsidered. This is general issue. So it needs to be relatively simple and reasonably priced and available in bulk right now. It needs to be reasonably modular, in that we might want to add components to get extra fragmentation protection or to upgrade to deal with the latest armor piercing rounds. We’d like a quick-release system in case someone falls in a river or to help medics get the armor out of the way in a hurry. And it needs to feature PALS webbing or some equivalent integral way of easily adding pouches for stuff. We’re not throwing load bearing equipment over the armor carrier.

Which brings us to our (somewhat boring) choice: the Gen 3 Improved Outer Tactical Vest. Lame name. It’s American. You’re shocked, I’m sure. It checks all of the boxes, and provides support for plenty of modular add-ons if desired. Plus, SAPI-pattern plates are the best shaped/constructed of the current ceramic plate options. At least for mass production. Again, we could find some improvements with respect to weight if we didn’t mind going with a smaller company, but then there would be production line questions. The IOTV G3 is made by BAE. No worries there.

Okay. So that’s armor carrier. Comes ready for SAPI-cut plates. It also comes with soft armor rated to stop things like fragments and 9 mm pistol bullets. So all we need now are plates. This is probably the easiest choice there is. There’s no good reason to go with ESAPI plates. They’re rated to stop the vast majority of AP rounds in 5.56 mm, 5.45 mm, and 7.62 mm (-x39 mm, -x51 mm, and -x54 mm) calibers. No sense making armor easy to defeat by switching from FMJ to AP issue rounds. In general, we’d expect front and rear plates only (i.e. no side plates) to be sufficient for most operational environments. Side plates may be distributed as needed like the other add-on components to the base IOTV unit.

1.) There’s also an Australian helmet called the Enhanced Combat Helmet. Ugh, naming. Anyway, ours is the American one, not the Aussie one. Sorry, Oz, the Yanks did this better.
2.) Modular Integrated Communications Helmet. Maybe it’s not for combat?
3.) Personal Armor System for Ground Troops. 80s vintage stuff.
4.) This measurement is much more statistically repeatable than trying to figure out at what velocity nothing will get through.
5.) There will be another article on these.
6.) Admittedly, they’re pretty cool guys.
7.) Judging by recent events in the Donbass, I’m also avant-garde like that.

HF-3 Antiship missile

I’ve talked about my dislike of Harpoon before. In there, I mentioned a pretty good off-the-shelf replacement in Norway’s Naval Strike Missile (NSM). NSM is small, reasonably priced (especially if you buy a lot), and stealthy. It’s got good ECCM and terminal-phase maneuvering capability as well. Awesome!

But I am a jealous man. And those Russians have a number of supersonic missiles. Supersonic missiles, aside from being 79% cooler than slow, subsonic missiles, are a lot harder to intercept because of the shorter reaction time. For a supersonic, sea-skimmer like P-270 Moskit (SS-N-22 Sunburn), which travels at Mach 2, the missile will clear the horizon with about thirty seconds left before impact. That’s pretty cool.

Of course, there are problems. Chief among them is the source. Russia is a classic power rival for us. We wouldn’t want to depend on them for weapons in the event of hostilities (just look at Ukraine). Plus, Fishbreath generally (and rightfully so) makes me source from NATO powers since Borgundy is a proud member of the Western Powers Club. Gotta buy from friends. Again, this bears out. Even if Russia was willing to sell, NATO would also balk.1 Clearly the simple option of “Buy Brahmos” (or SS-N-22) is right out.

What to do? Well, we could look further afield for an island nation that has a lot to fear from a nearby navy.

No, not England. It’s not 1910. They suck at navies now. Heck, they’ve gotten rid of their Harpoon stocks without any kind of replacement. And even though I think it’s long in the tooth, some antiship missile is better than no antiship missile. Guess again.

Taiwan.

Yes Virginia, Taiwan makes stuff besides consumer electronics. They make their own antiship missiles, for example. One of which, the Hsiung Feng 2 (HF-2), is subsonic. It’s a lot like Harpoon actually, though I don’t think the ECCM and GPS integration of the latest Harpoon models is present in the HF-2. I could be wrong though. But that’s not the missile we’re interested in today. If we wanted Harpoons, we’d get those.

No, the missile we’re interested in is Hsiung Feng 3 (HF-3).

There are lots of gaps in the knowledge of the new, advanced, and relatively secret HF-3. It’s supersonic. With a bit of altitude, it’s said to be hypersonic.2 But there’s no unclassifed top speed estimates that I’ve found to be trustworthy. Ditto for range, though most open source estimates put the range at about 200 km. We know propulsion is a rocket booster/ramjet pair, and we can figure it weighs about twice as much as Harpoon. It’s got inertial guidance with a terminal X-band, active radar seeker. There are also some rumors that it’s nuclear warhead capable. The conventional warhead is said to be 225 kg, which would be more than enough for e.g. the W80 nuclear warhead (maximum yield of 150 kilotons). It’s also designed to execute aggressive terminal-phase evasive maneuvers, and is built to withstand the stresses from doing this at speed.

Because it’s so new, it’s not clear if there’s a reduced-size version for shipboard mounting. This smaller version might trade off some range for ease of deployment. However, there are pictures of ROCS Su Ao (DDG-1802, Kidd-class, the former USS Callaghan) mounting eight HF-3s in lieu of the eight Harpoons she was commissioned with. It’s not clear what changes, if any, were made to accomodate this. Frankly, I don’t care about a small loss of range if it means I can deploy them as a one-for-one Harpoon replacement with speed on our F100s and Sejongs.

Sometimes the things you don’t know about a project are damning. This isn’t one of those times. Supersonic is perfectly acceptable. Even if it’s merely Harpoon-ranged. And if it’s as fast as they say, I’ll be thrilled.

Goose, I’ve got the need. The need for speed. Let’s get some superfast ship killers. We already have the best naval air defense systems available. Let’s give them no reason to hope.

1.) Cf. Turkey’s long range SAM procurement project, when they took a ton of flak from the rest of NATO over wanting to buy from the Chinese.
2.) Cue the pastiche of ‘Greased Lightning’.

Borgundy Chooses a Destroyer

Picking a frigate was hard. There are lots of pretty good frigate designs out there, but none were quite what we want. The F100 came closest, so it got the nod.

Fortunately, choosing a destroyer is a lot easier. There’s one best option: an Arleigh Burke-class derivative. More specifically, the South Korean Sejong the Great-class destroyer, which is just an Arleigh Burke that’s a trifle bigger.

What’s so great about the Sejongs? Well, for one, they carry the excellent and proven Aegis combat system. This system was designed to defend American carriers from saturation attacks by Soviet antiship missiles. It’s great at tracking multiple targets and managing the engagement. The same system (albeit in smaller form) is on our F100-class frigates too. Hooray for commonality. Plus, they can plug into land-based IADS.

Where the basic American Burkes have 96 Mk. 41 VLS tubes, which can accommodate SAMs, VL-ASROC, and Tomahawk cruise missiles, the Sejongs have 128 such tubes. This is better than any destroyer afloat, and better than any ship afloat save for the Kirovs. And the Sejongs have better radar and battle management capability than the Kirovs.

The Mk. 41 VLS can accommodate SM-2, SM-3, SM-6, and ESSM SAMs, Tomahawk cruise missiles, and VL-ASROCs for an antisubmarine punch. Which is nearly everything you’d want a destroyer to be able to do. Note of course that ESSMs can be quadpacked four to a Mk. 41 tube. The rest of the armament suite is pretty conventional: sixteen Harpoon launchers, six 324 mm torpedo tubes, a RAM CIWS forward, a Goalkeeper CIWS aft, and a 5″ gun.

From a sensor perspective, the SPY-1D(V) is a pretty obvious component, dominating the sides of the forward superstructure. There’s the usual array of secondary radar systems for navigation, some infrared search and track units for passive scanning, a bow-mounted sonar, and a towed sonar array. All very nice, nothing here needs changing, so I’m touching nothing.

As for helicopters, the Sejongs have hangar space for two midsize units (SH-60s or similar). No shortcomings there. You could lash a third to the hangar deck if you really wanted.

Like the Burkes, the Sejongs are driven by a COGAG1 powerplant, which is simple and provides for excellent speed. It leaves something to be desired with regards to range, but I don’t care. Buy fleet oilers. Besides, we’re a mostly continental power anyway.

Really the only thing we’d do is swap the Goalkeeper for another RAM launcher. RAM is a more effective system than Goalkeeper. I’m not sure why the South Koreans called for both, but we won’t.

As for antiship missiles, as I mentioned in my piece about the F100s, I’d prefer an upgrade here, but I think it’s more important to ride the coattails of what the US Navy is going to buy. If they stick with Harpoon, they’ll keep it modernish, and it will be the best option because of the number bought. Alternatively, if they opt for NSM, its price will get better because of the large quantity purchased.

The Sejongs aren’t very “transformational” or “revolutionary”. We don’t care. They’re an improved version of a good, proven design. They have plenty of space for incremental, evolutionary upgrades. Plus, when the accountants come calling, you can point to obvious working capabilities today in addition to the hoped-for technologies of the future.

1.) Combined Gas (turbine) And Gas (turbine). So you have gas turbines for cruise and more gas turbines that you can use to also drive the screws when you need MORE POWER!

Borgundy Chooses A Frigate

Let’s get to picking our own Navy. Like Luchtburg, we’d like a nice, middleweight ship to handle a wide variety of tasks. There are lots of such frigates available, with a bunch of different price points and mission optimizations. Our pick is the Spanish Álvaro de Bazán-class, also known as the F100 class. For us, it represents the best set of compromises.

The F100s have the most powerful air defense missile suite for any frigate in the world, with a whopping forty eight1 Mk. 41 VLS tubes. 48! This is awesome. You’d no doubt expect them to be loaded with ESSMs and the latest SM-2 variant, and you’d be correct. The standard Spanish Navy loadout is 32 SM-2 Block IIIA SAMs and 64 RIM-162 ESSMs. That’s awesome. These missiles are backed up by a smaller version of the American Aegis combat system, and compact versions of the SPY-1 radar system. Very cool.

Having Aegis and the American SM-2/ESSM SAMs is really good from a commonality perspective. There’s no good reason for our Destroyer to be anything but an Arleigh Burke-class derivative (more on that to follow), and it’s really nice to have common radar systems and missiles with the Burkes. I’m a big fan of logistical optimizations where possible, and fewer distinct kinds of spares is always a win. Plus, since the US Navy also uses these missiles, they’ll probably be paying for upgrades, so we don’t have to.

The rest of the F100s loadout is pretty conventional. There are eight Harpoon missile tubes, six 324 mm torpedo tubes, and a 5″/54 gun. The F100 also has the usual bow sonar and a towed sonar array, though the towed array isn’t a very advanced model. It has a Spanish-built twelve-barreled 20 mm cannon CIWS system. This is one of the few things I’m unhappy with, but it’s also one of the simplest to remedy.

The F100s are driven by a CODOG2 powerplant, and have a crew of 250. Lots of navies are going with lower crews on their frigates, but I prefer a bigger crew. More men is better for doing manpower-intensive tasks like damage control. I’m very happy with this compliment.

Maximum speed is 28.5 knots, and the range is 4,500 nautical miles at 18 knots. Pretty typical Frigate stuff here. No reason to complain or specify changes.

As for changes, a few minor things when placing our order. We’d like to upgrade the CIWS to a rolling airframe missile based system, which should be pretty easy. We’d also like a more advanced towed array. Again, nothing hard there. Pretty simple changes. The F100s, like most Western combatants, use Harpoon antiship missiles. I’m not the biggest fan of those, but we’d have to be sure to do the conversion on both these and our DDGs. Not a huge deal, but something to watch out for. Verify compatibility with both before changing things. Or see if Harpoon is getting more upgrades. Presuming it isn’t, the NSM is an excellent alternative.

The only really notable shortcoming is the helicopter capacity. The F100 has a flight deck and hangar for one midsize helicopter like an SH-60. This is decent, but two would be better. Unfortunately, this isn’t something we can easily change. Still, the F100s provide excellent capabilities at a reasonable price. At least if you don’t stop and restart production lines and do a bunch of add-ons to the command and control facilities.

1.) Hilariously, this is the same number of VLS tubes as the Daring-class desroyers, even though those are almost half again the tonnage of the F100s. And called ‘destroyers’, even though they displace as much as a World War 2-era heavy cruiser.
2.) Combined Diesel Or Gas (turbine). So you can drive the screws with the fuel efficient diesel engines or the gas turbines for high speed but not both.

Toxotis Self-Propelled Howitzer

Okay, so we have our new MBT, and our new Heavy IFV. Now we’ll outline our self-propelled howitzer. Again, we’re going to make logistics and crew safety a priority. We’re going to push the envelope a bit, but not too much. This will of course be a 155mm howitzer. Can we add another standard item, our stock heavy vehicle engine?

We might think no, at first. 1,500 horsepower is an awful lot of horsepower. But we’re getting pretty heavy. The Panzerhaubitze 2000 and 2S35 Koalitsiya-SV are both about 55 tonnes. That’s pretty close to the weight of our tank, and we can always govern the engine down a bit. So it will be a heavy vehicle, to no one’s great surprise. It will be able to keep up with an armored thrust, of course. The powerpack is rear-mounted.

Heavy is good though. It lets us haul plenty of ammo, which lets us sustain proper fire missions. If there’s one thing I’ve learned from watching The Great War’s wonderful week-by-week of World War One on youtube, it’s that there’s no such thing as enough artillery shells. Artillery does the killing. Artillery is the key to success.

But, a good load of artillery shells (which are, of course, explosive) and the charges needed to launch them (more explosives, duh) is going to be dangerous in the event of an armor penetration. To maximize survivability, we will take a page out of our MBT design and completely separate the crew from the ammunition.

This means a reduction in crew, because we can’t have human loaders. We’ll need to handle loading shells and charges automatically. This is a little harder than it was in the Myrmidon, since tanks use convenient one-piece ammo. So the projectile and cartridge and primer are all in one relatively easy to handle piece. Great. But artillery is different. Artillery has a much larger range spectrum than an MBT gun, because it’s an indirect fire weapon. To make accommodating this easier, charges come separate from the projectiles, and in different sizes. Recently, rather than dealing with a whole bunch of different size charges, some have developed modular charge sets, to let you build a full charge from smaller, easier to handle bits. To no one’s great surprise, we’ll go with this. Specifically, the Bofors Uniflex-2 Modular charge system, since it’s already developed. As a bonus, Uniflex-2 charges are insensitive munitions, so they’re harder to accidentally detonate. Which is great for reducing how bad an accident gets. Electrical fires suck. Electrical fires setting off your stowed ammo load sucks more.

To maximize the potential of the Uniflex 2, we’ll have a chamber volume of 25 L on our 155mm/L52 howitzer. This is a bit bigger than the NATO standard of 23 L, but that’s not really a big issue for us. We can still use NATO standard projectiles, which is the more important bit, since that saves us some R&D money if we can just buy/license existing things like the wonderful GPS-guided Excalibur round. More on exotic and cool 155mm rounds later in this piece. Also, since I know you’re curious, it requires 6.5 Uniflex-2 charges to fill the chamber completely. There are both “full” and “half” size charges, and you need six full-size charges and one half-size charge to fill the 25 L chamber to capacity.

Speaking of capacity, you’re probably wondering how many rounds are carried. The Toxotis carries 60 rounds and associated charges (390 equivalent charge loads total) in two 30 round/195 charge magazines. The magazine subdivision, with corresponding roof blow-off panels, is designed to try to reduce the chance of one hit igniting everything. Ammunition handling, charge loading, fuze setting, and primer handling are all fully automated.

Automatic loading and a modern, computerized fire control system allows for nine-round MRSI1 capability. Toxotis can come to a halt and fire the first shot within thirty seconds of receiving a fire mission. It can get moving again in under thirty seconds.

Electronically, the Toxotis has a fully-computerized fire control system, and our standard friendly unit tracking system. It also has a highly precise navigation suite, which can compute position based on inertial references, from satellite data, or pull in positional information over the tracking system. Fire missions may be computed internally or sent via secure datalink. The radios are designed to facilitate communication with nearby infantry, armor, and aircraft to coordinate support and fire mission requests. So while it can use a fire direction system, this is not required for a fire mission. Like on the Myrmidon, the three-man crew of the Toxotis are all in the front of the hull in an armored capsule. There is, of course, less armor than on the Myrmidon. NBC protection is, of course, standard. There’s also provision for direct fire missions, with a thermal viewer and laser rangefinder mounted on the roof.

To resupply, troops can manually load projectiles and charges into loading hatches at the rear on each side of the turret. These automatically stow the munitions appropriately. For more rapid resupply, the companion reloader vehicle, the Hypaspist, can be used. This is built on a nearly identical chassis to the Toxotis, but it lacks the gun, the rotating turret, and only has a crew of two. In place of the gun is an enclosed resupply conveyor to reload the Toxotis through a hatch on the back of its turret. From here, both magazines can be reloaded. The Hypaspist carries a double-load, or 120 rounds plus associated charges and primers. All ammunition handling within the Hypaspist is fully automated.

Both the Toxotis and the Hypaspist come equipped with a Trophy active protection systems, an array of smoke-grenade dischargers, and a 12.7mm M2A1 heavy machine gun in a remote weapons station on the roof. They are designed for the highest paced shoot-and-scoot missions in mobile warfare. Each weighs approximately 60 tonnes, and the production cost for the pair is $6 million.

Let’s also talk about some off-the-shelf artillery rounds. A standard HE round weighs 43.5 kg, and carries 11.3 kg of HE filler. There’s the M549A1 rocket-assisted HE shell, which has 6.8 kg of HE filler and a rocket motor for extra range. The M110A2 White Phosphorus round, which can be used for incendiary effects or producing smoke, weighs 44 kg, of which 7.1 kg is white phosphorus filler. We have projectiles that can be used to scatter small mines. The antipersonnel variant weighs 46.7 kg, and holds 36 antipersonnel mines. Each mine weighs 0.54 kg, and contains 21.9 g of high explosive. The anti-vehicle variant also weighs 46.7 kg, and holds 9 anti-vehicle mines. Each of these mines weighs 1.8 kg and contains 0.6 kg of high explosive. There’s also a couple submunition variants available. The standard version holds 88 dual-purpose (antipersonnel/antimateriel) submunitions. The extended range version has a base-bleed shell, and holds 72 dual-purpose submunitions. The submunitions are similar to the US DPICM submunitions.

In terms of smart rounds, several more are available on the market at present. There’s the long (1.4 m), heavy (62.4 kg) M712 Copperhead, which uses laser guidance. This provides useful capabilities against quickly identified point targets, including armor. Also available for the anti-armor mission are the very similar Bofors BONUS round and the Rheinmetall SMArt 155 round. Both have a pair of smart submunitions that fall slowly in a spiral pattern. Multispectral infrared sensors and a millimeter wave radar are used to detect armor targets. If one is detected, the submunition fires an explosively-formed penetrator at the target. Finally, there’s the aforementioned M982 Excalibur, which is GPS guided. For fixed targets, this is easier to use than a laser-guided round like the copperhead, since it doesn’t require a designator, but it is not useful against moving targets.

1.) Multiple rounds, simultaneous impact. So the Toxotis can fire up to nine rounds at a target and have them all hit at the same time, totally ruining someone’s day.

Resurrected Weapons: YAGM-169

You may have noticed some logistical inefficiencies in current missile procurement. I’ll use Western examples, but there are similar Russian ones. We have several missiles that are about the same size and have about the same role: engagement of a visually (possibly with the help of infrared) acquired target. These missiles include the BGM-71 TOW, which might be launched from helicopters or ground vehicles; the AGM-114 Hellfire, which might be launched from helicopters or UAVs; and the AGM-65 Maverick, which might be launched from fixed wing aircraft or fixed wing aircraft. The Maverick’s warhead is quite a bit bigger, which contributes to its larger size. Otherwise, they’re all used for about the same sort of fire mission. Could we replace all three with a single missile?

Enter the YAGM-169. Quit snickering in the back. This missile weighs 49 kg and is 177.5 cm long. This matches the weight, but is a bit longer than the Hellfire missile, which is 163 cm long. This is, however, smaller and lighter than the Maverick. The big difference between the Hellfire and the Maverick, aside from platform-induced range variations, is the larger warhead. Here is where some compromises come in. The standard target for the Maverick and the Hellfire is an armored vehicle. The toughest armored vehicle is the MBT. If a Hellfire can kill any tank you please, why have the heavier warhead? The Hellfire can get this done with a large and powerful tandem shaped-charge warhead, delivered from above. Adding a fragmentation jacket provides some measure of multipurpose capability. We have our warhead, and hence, our Hellfire-like size.

What about heavier targets? Since the development of the Maverick, we’ve developed a number of precision-guidance kits for conventional bombs. Combine with a glide bomb kit and some altitude, gives us equivalent range. Alternatively, for well-defended targets, we can get significantly better standoff range from a longer range cruise missile like the AGM-158. Plus, we can carry more of the lighter YAGM-169s.

Okay. So we’ve perhaps accepted the smaller warhead size. What about range? Well, we have more advanced rocket motors, plus it’s hard to compare the range of the Hellfire and the Maverick, since the aircraft that launch the Maverick do so from a higher altitude and higher airspeed than that of the helicopter launching the Hellfire. Still, we can improve the range with a variable-thrust solid-fuel rocket motor.

What about guidance? Well, the TOW uses an old school SACLOS wire guidance system. Which is outmoded, and will be difficult to integrate onto a fast-moving aircraft. So forget it. Beyond that, the Hellfire has a couple different guidance options: a semi-active laser homing seeker and an active millimeter-wave radar seeker. The Maverick is currently available with a semi-active laser homing seeker, an imaging infrared seeker, or an optical CCD seeker. You might expect different versions of YAGM-169 with different seekers, but you’d be wrong.

YAGM-169 was designed with a triple-mode seeker that combined imaging infrared. semi-active laser homing, and active millimeter-wave radar homing in one unit. This is the one part of the missile that I’m concerned about, at least as far as cost. Still, it’s easy enough to build versions with separate seekers if cost becomes an issue.

That said, the YAGM-169 was (shockingly) on time and on budget. But the US cancelled it during Operation Iraqi Freedom because of budget pressures.

So what do we think? YAGM-169 was on budget, and tested from both fixed- and rotary-wing platforms. Awesome. Large production runs should help keep costs down. I’m wondering if it can also replace the TOW as a missile on e.g. Bradley, but we could press Spike LR or Javelin into this role, and those would be much easier for troops to reload in the field, being lighter.

Veridct: Approved for immediate production by the Borgundy Ordnance Procurement Board