Tag Archives: militariana

Resurrected Weapons: Sprint ABM

Suppose you were to take on the challenge of defending against ballistic missiles. The big ones, mind–intercontinental ones with thermonuclear warheads. You might conclude that you’d need a layered defense, with different missiles to attack the ICBM in flight. Of course, the trickiest interception problem is the goaltender’s, i.e. the last line of defense. How to intercept a missile when your shot is the last one is a really tricky problem, and one such solution is the topic of today’s resurrected weapon post.

Behold, the Sprint antiballistic missile system!

It was a relatively short ranged system, with a claimed operational radius of 40 km, and a flight ceiling of 30 km. But that’s to be expected. It’s supposed to be the last attempt to stop an incoming warhead. Of course, since other missiles were to have had the first go, the incoming warhead was beginning its decent. In order to stop it, Sprint had to be mind-bogglingly fast.

The Sprint missile was a two-stage affair, which accelerated at 100 Gs. This sustained acceleration would turn any human passengers into paste. Good thing it doesn’t have any. Sprint would go from zero to Mach 10, or 3.4 kilometers per second, in under five seconds. Given this tremendous velocity, it would intercept a target it’s maximum interception altitude of 30 kilometers in less than fifteen seconds.

In order to make this speed work, Sprint had a number of interesting features for the time. It was cone shaped, and was sheathed in an ablative coating to withstand the extreme1 temperatures generated by the missile. The silo doors were blown off by explosive charges, and the missile was kicked from its silo by a second set of explosive charges, pushing a large piston. Once clear of the silo, the first stage burned for only 1.2 seconds before dropping away.

Sprint had a novel and rather dirty way of defeating incoming warheads. Sprint’s payload was a W66 enhanced-neutron warhead. This low-yield warhead was designed to spray high-energy neutrons, to disable the electronic systems of the incoming warhead, or to cause the warhead to fizzle2 prematurely. Of course, this neutron blast, and the resulting possible fizzle, is not exactly clean, so Sprint was intended for use as a terminal defense system for ICBM silos.

Guidance of Sprint was also a difficult challenge. To keep fragile electronics out of the missile, a large and powerful radar set was emplaced on the ground, and a radio command guidance system was used. At the speeds Sprint traveled, it would be enveloped in a plasma sheath, which would make radio communication difficult. To get around this, the radio beam was made very narrow and very powerful.

So what do we think? As is, it’s kind of specialized. But there’s a market for ABM systems these days, and it bears some further testing with a more conventional fragmentation warhead, and possibly more capacity for maneuvering at speed.

Verdict: Project approved for further research funding by Borgundy Air Force Procurement Board

1.) About 3,400 degrees Celsius or so. Very hot. That speed comes at a price.
2.) A technical term in this case for a subcritical nuclear reaction.

Parvusimperator reviews the T-15 HIFV

Fishbreath wrote an excellent bit defending the BMP-3, the traditional, rather lightly-armored IFV. You should go read it here. In it, he’s replying to my discussions in favor of heavy APCs like Namer, and my own design sketch for a heavy IFV. But I can hardly leave it there. I should reply to him, because argument is interesting and fun. Plus, recent developments bear some pondering.

As you are no doubt aware, the BMP-3 is Russian. Duh. It’s from a similar school of thought as the previous BMPs, heavily armed, cramped, lightly armored. It’ll float. It’s easy to move. Splendid.

Or is it?

I’ve mentioned before the Russian experience in Grozny, but it bears repeating. It was a bloodbath. BMPs were deathtraps. Poorly trained conscripts sent in died in droves because Chechen fighters had thought carefully about urban warfare tactics. Fuel is stored in the egress doors on the BMP-1 and BMP-2. This fuel is supposed to be the first used, but that didn’t always happen. So if the rear was hit, fuel would get sprayed all over the dismounts. And it was likely on fire. Not fun. Plus, given that there’s so much ammo in the BMP, basically any penetration of the turret armor or the forward section meant that the ammo gets hit by the shaped charge jet and blows up too. So, soldiers took to riding on the outside.1

This defeats the purpose of an enclosed vehicle. If they’re just going to ride on top, why not have something like the Sd.Kfz. 251, which had no roof. Of course, that leaves infantry vulnerable to machine gun fire and artillery fragments. Plus, that cold. I hear Russia has a miserable winter. They could suck it up and enjoy their superior deployability. A BMP-3 can float, you know.

This brings us to the T-15. It’s built on that same Armata combat platform as the T-14, except the engine is at the front now, where it belongs for vehicles that carry troops. Two things are of note. First, it’s got an unmanned turret, second, it weighs about as much as the T-14. That’s tank-level protection right there. The Russians have agreed with the Israelis–if you have a vehicle that’s going to get shot at like a tank, it should take hits like a tank. Even outside of urban areas–the Donbass is hardly suburbia. Like most modern armies, the Russians have become much more casualty sensitive2, and shooting an ATGM–even an old one–at a BMP is a great way to inflict casualties.

Armor on the T-15 is typical Russian–a reasonably thick steel and composite structure under a lot of ERA. The reactive armor is a new type, of course, but it’s not clear how good it actually is, because no one has had a chance to shoot it yet. Still, it should be good, since they have lots of experience, and overall protection should be on the order of the protection level of the T-14 given the weight, layout, and the remote turret which I’ll discuss in a moment. Further protection is provided by a hard-kill active protection system, the Afghanit. This system is also in use on the T-14, though again it hasn’t been tested. Not being a fluent reader of Russian, and with the Russians generally keeping things quiet, I don’t know how it compares to other Western competitive systems. I’d guess it’d be similar in performance to Trophy as far as reaction times go, but that’s speculation. They do have a reasonable number of tubes per side, unlike so many western designers who think two per side is enough (it isn’t).

On to the turret. The T-15 has an unmanned turret, just like the T-14. It’s all contained above the turret ring, because a traditional turret basket removes space for dismounts, and carrying dismounts is the T-15’s primary mission. The T-15’s turret is well thought out, and I’m a big fan. It’s got a 30mm cannon with 500 rounds split between a 160 round box and a 340 round box to accommodate the double ammunition feeds. The autocannon is capable of high angle fire, perfect for hitting top-floor rocket teams. The coax gun is in the usual 7.62x54R caliber, and there are 2,000 rounds available. Four tubes for Kornet-EM ATGMs are provided, two on either side of the turret. Kornet-EM has a tandem-HEAT warhead with further improvements, plus automatic command line of sight (ACLOS) guidance, which is an improvement over the usual SACLOS. The gunner has thermal and day sights, plus a laser rangefinder. The commander has his own independent sight which appears to be a duplicate of the gunner’s.

The turret does not appear to be well armored. Since support fires appear to be a secondary tasking, the lack of protection and ease of knocking out the turret is probably not a major issue. I’m fine with this overall, for weight and cost reasons. The IFV’s weapons are much less critical than those of the MBT. For similar reasons, I’m more willing to accept an unmanned turret on an IFV, since any loss of effectiveness is to a secondary mission. Plus, it allows for more hull protection and a full load of dismounts.

The 100mm gun is gone from the T-15. It’s not really needed, as the T-15 has proper, modern ATGMs, and the extravagance is just going to take up turret room which is better spent on more 30mm.

The T-15 carries nine dismounts, plus a crew of three. I do not know enough about Russian tables of organization to know if this is a full squad, but it’s reasonable. It would hold about any current western squad I can think of. This is very good, and is a lot easier than trying to split squads across vehicles.

So what do we think of the T-15? I love it! No, really. Here’s a vehicle that’s on my side in an argument with Fishbreath, and it’s even Russian! They’re replacing their BMP-3s with something much more to my liking. Further, its capabilities aren’t really available anywhere else. We might be able to get close with some modifications to the Namer, but that’s a project for another time. Out of the factory, this is the only HIFV game in town. And I’m a huge fan of the concept, even if I might prefer some minor tweaks. I would prefer missiles with a top-attack profile, and possibly some alternative sensors depending on the particulars. But those are relatively minor points.

 

1.) Russian and Ukranian troops are doing this in the Donbas now too. BMPs are still deathtraps. They were deathtraps in Afghanistan, deathtraps in Grozny, and they’re deathtraps in the Donbass.
2.) Though the Russian Army is still a conscript one.

The K2 Black Panther: A South Korean MBT

The Leopard 2 is a really solid tank. So far, it’s gone into a battle royale with the Leclerc, Challenger 2, and M1A2 Abrams, and come out the winner. It’s also bested the famous Merkava Mark IV. It also has tremendous export success. But, seeing as I love tanks, I can’t resist examining more in detail. Maybe today’s opponent will be able to unseat the reigning champ, the Leopard 2E.1

The K2 Black Panther is South Korea’s second indigenously produced tank. The first, the K1, is basically a licensed M1 Abrams variant. You’d be hard pressed to tell the K1A1 from an M1A1 at a distance. Interestingly, the K2 bears a strong resemblance to the Leclerc in terms of overall design. I don’t know if that’s happenstance, or deliberate reverse engineering, or if Hyundai had some quiet deals with GIAT.

The K2 weights about 55 tonnes, and has a conventional layout, with driver forward, a two-man turret in the middle, and an engine in the back. Like the Leclerc, the hull is relatively short, thanks to a compact engine. It’s a conventional diesel though, the 1,500 hp MTU 883 (or a locally made equivalent engine) rather than the hyperbar V8 on the Leclerc. Leclerc might get better acceleration, but the 883 is more fuel efficient and likely more reliable. Also cheaper. Everyone’s going diesel these days. The Russians are pretty much all-diesel, and the Leopard 2 has a diesel, and that’s our super-popular benchmark. I’m not sure whether the K2 or the Leclerc has better acceleration, but they can both probably get going faster than a Leopard 2E because of the superior power/weight ratio on the K2.

The K2 also uses an autoloader. It’s a bustle-mounted, conveyor-type autoloader, just like the one on the Leclerc. Interestingly, though the Leclerc’s autoloader holds 22 rounds, the one on the K2 only holds 16 rounds. This is comparable to the Leopard 2 (15 ready rounds) and the M1 (17 ready rounds), but notably lower. I’m not sure what the reasoning is here, or if there’s some issue with sources. There aren’t many that talk about the K2, and fewer still in English. It’s curious either way. Perhaps a retrofit later. 16 ready rounds is good, but we’d love to sacrifice some extra turret stowage compartments or something for 22 ready rounds. Plus, that would give an overall capacity of 46 rounds rather than 40 in the K2.

The K2’s gun is a 120mm L55, licensed from Rheinmetall. The best tank gun in the world. The Leclerc has a 120mm L52 model, which is good, but not quite as good. Same gun as the Leopard 2E. So this is a tie overall. However, the Koreans have developed a top-attack munition for their tanks, which follows a ballistic trajectory to attack the roof armor with a 120mm HEAT round. This is going to do awful things to even those tanks that have plenty of roof armor. I don’t know of a reason that the Leopard 2E couldn’t mount this, but it currently doesn’t. Both are able to mount the Israeli LAHAT gun-launched ATGM. When the South Koreans designed the K2, they were strongly considering the 140mm gun. While it was not selected, it can be installed without significant modification to the turret.

The K2 has a 7.62mm coaxial machine gun with 12,000 rounds of 7.62mm ammo stored and a roof-mounted 12.7mm HMG for the commander with 3,200 rounds stored. I do not know how many of these are ready rounds, though I suspect they use standard 200-round boxes for the HMG. The Leopard 2E has a 7.62mm coaxial machine gun and a second 7.62mm machine gun mounted on the roof. Interestingly, the Germans mount that by the loader’s hatch, not the commander’s. The Leopard 2 carries 4,750 rounds of 7.62mm to be split between both machine guns. Again, I don’t know the ready capacity of the coax gun. The K2 seems to be showing some American design influence in the quantity of machine gun ammo carried. I approve. Neither tank mounts these weapons in a remote weapons station, though this is changed in the Leopard 2A7 variant. Not a big deal though, it’s an easy enough thing to change for either.

Armorwise, the K2 is at a disadvantage by virtue of being newer, since I don’t have as much discussion on it. The 2E is a known commodity, with very thick frontal armor, substantial roof armor, and optional side armor kits for the turret and skirts. In terms of frontal armor, the 2E is very good against KE, being comparable to the M1A2 against KE threats and much better against HEAT. Neither is as well armored as the Challenger 2 on the turret face.

The K2 has more modern composite armor construction, and has a “stepped turret” with reduced-height turret faces, and then a higher middle portion to accommodate the gun’s desired depression angle. So we’d expect a thick and tough face. Looking at it and doing some back-of-the-envelope calculations tells us that it’s no worse than the Leopard 2E or M1A2, and likely better. It’s probably going to end up being comparable to the front armor of the Challenger 2, or possibly a trifle less good. It’s a very modern armor array, with not a lot of frontal area and plenty of thickness to work with. It’d be easy to play with lots of modern metallurgy and composites to get something really good here.

Side armor is rather less thick. It does include ERA, as does the roof over the crew compartment. The turret hatches also have ERA modules. I don’t know much about this ERA, but it indicates some likely good resistance to HEAT rounds or RPGs on the side. Improved side skirts and possibly additional turret side armor might be warranted in urban combat scenarios, but the Black Panther is well-suited to conventional warfare as-is.

The Black Panther also includes a ‘soft kill’ active protection system right from the factory. It has a radar-driven missile approach warning system, and can automatically fire visual/infrared screening smoke grenades in the direction of the threat. This will also make it easier and cheaper to add a ‘hard kill’ system, since we only need to add the effectors. No additional sensors are needed.

Both the K2 and the Leopard 2E have modern thermal sights for the crew. Fire control on the K2 is significantly better, with automatic target tracking capability and integration of the radar system. It can also hold fire momentarily if the gun is jostled by a large bump. The Leclerc has a similar system, but as far as I can tell, the Leopard 2E does not. The K2 has a battle management system, one is available for the Leopard 2E, but it’s not fitted standard.2 The K2 also has a datalink system for sharing targeting data, but the Leopard 2E does not.

Due to the rough mountainous terrain on the Korean Peninsula, the K2 has a hydropneumatic suspension system that is adjustable for ride height or to tilt the tank, like on a low rider. It’s cool and useful, since it deals with harsh terrain or lets you make best use of available cover, and no other current tank has it. That said, it’s overkill in the plains of Central and Eastern Europe.

So how does it shake out? Is the K2 better?

Yes. The K2 is a more advanced tank than the Leopard 2E, and crucially, it has more growth room. Remember, early versions of the Leopard 2 weighed 55 tonnes, and armor augmentations have driven that up, putting extra strain on the suspension and powertrain and reducing acceleration performance. The K2 is the best western tank on the market today.

And now, the other question you’re wondering: would we buy them? That depends strongly on price and politics. The K2 has a reputation as the most expensive tank in the world, but quoted figures aren’t awful. They’re actually quite competitive with those of the Abrams, which is a decent apples-to-apples comparison. The Leopard 2E includes native production licensing and spares. So we’ll see. As for politics, Germany is closer and a NATO member. But South Korea actually spends money on defense these days and doesn’t have ideas in its head for an EU army of stupid. So we shall see. But given the cost of the 2E package and the 2A7 offered to Saudi Arabia, the K2 looks like a good buy.

What about the T-14 Armata I reviewed last week? Now it gets interesting. Both are very new,  very advanced tanks for about the same price. Again, we’ll set aside politics for you to keep this technical, where you want it, lest the K2 score an easy win. Both tanks are very new. Neither tank has a ton of information available about it. The T-14 has better survivability from complete crew/ammo isolation. The K2 has the better electrics, with lots more features being confirmed, including the important battle management system and third gen infrared sights, and South Korea has a much better track record of good electronic systems. Both have excellent guns. The K2 can be easily upgraded to a 140mm if desired. The T-14 is rumored to be upgradeable to a 152mm gun, but no such gun exists yet3. The T-14 has a smaller engine, but the K2’s engine is more proven. Both should have plenty of room for future upgrades. The T-14 comes with a hard-kill active protection system, but we might be able to find a better one if we shop around.

In the end, the greater survivability of the T-14 outweighs any disadvantages from the unmanned turret and the Russian electronics. The better base platform is the one to choose, and that’s Armata. Electronics are easy to upgrade, engines and transmissions are easy to change out, and there’s a long tradition of export buyers putting French electronic systems in Russian vehicles, but ammunition stowage and crew safety is relatively permanent. So the Armata is our overall champion, with the K2 a close second best.

 

1.) I’m choosing the 2E because it’s a known commodity, and I actually have successful sale prices (to Spain, and it’s similar to the one sold to Greece). The 2A7 adds a lot of modifications for urban combat, which isn’t really my bag. Plus, it hasn’t been sold yet, and the prices on offer to the Saudis were really high, though support and spares is likely increasing it.
2.) It’s another thing included in the 2A7 upgrade kit. This is totally my bag.
3.) I would actually expect something in the 130-140mm range here, but that might just be projecting. I don’t know what supergun the Russians have under development.

Lessons from the Donbass

Lots of people are observing the fighting in the Donbass and taking notes, and it’s time for me to add my two bits. I’m going to weigh in and try to get some solid lessons from the observations.

Observation: Russian drones are excellent, often-present spotters
Comments/Conclusions:
First, drones are useful for more than pegging terrorist assholes with a hellfire missile while they take a dump. Drones can also spot for airstrikes or artillery, and that’s just how the Russians use them. Bonus that spotting drones can be smaller and cheaper, and there are some interesting questions on what the largest unit size that should have organic drone support. We’ll have a follow-up article on that, but yeah. Drones are useful! So get you some of that, and use them. Second, from a defensive perspective, drones might be watching you. So one should give thought to camouflage and anti-drone measures, both in terms of ECM and anti-aircraft measures that can shoot them down. This is an argument to perhaps revisit the late-war Panzergrenadier organization table, which called for company level organic AAA assets. Third, it’d be a good idea to train with drones and practice using them for spotting, and working against them so that troops are familiar with their limitations and killing them. It can be demoralizing to feel like one is always being watched.

Observation: Russian artillery is a brutal killer
Comments/Conclusions:
The Russians love their artillery. Duuuuh. They’ve increased the number of rocket artillery launchers per artillery unit, and deployed these at the tank/infantry battalion level. They’re also not ruled by stupid hippies, so they’ve kept their cluster weapons. These are very, very effective weapons. Shock, cluster munitions work well. Again, time to consider how best to avoid being seen, and survivability against shaped-charge bomlets. Also, artillery fragments kill. This should be remembered while we’re working up body armor loadouts, and not get too obsessed with big heavy rifle plates. This point also brings up the importance of counterbattery radar systems and drill to stop enemy fires. Also, all those “icky” cluster munitions, thermobarics, and top-attack submunitions might be worth another look. Russia’s buying…are you?

Side note: The Russians are using about three rocket artillery vehicles for every four gun-artillery vehicles.

Side note 2: Range is good. More range is better. Get some range. Get more. It’s never enough.

Side note 3: For different reasons, both sides use their artillery in direct-fire mode. Training in such fire missions shouldn’t be neglected.

Observation: Russians make effective use of ECM
Comments/Conclusions:
This is harder, since ECM capabilities are super-classified. Plus, the Russian ECM systems are pointed at Ukrainian radars/radios, mostly, which have less funding and are based on the same familiar Soviet systems. Not sure how well they’d do against American or Western European stuff. I’m not saying to have no fear, but I’m also not saying to panic. Key takeaways are knowing that excessive emissions can let the enemy pinpoint your position for artillery, and understanding that radios might get disrupted. Practicing with less than perfect comms/datalinks is important. Friendly ECM is also something that shouldn’t be neglected, and can be used for spotting or for disrupting enemy comms. So while the pundits keep babbling about “cyber”, ECM is still awesome. Proof of concept in the Donbass: ECM can be used to ground or otherwise neutralize drones. Something to train with and against, and a very useful capability to have. Also, frequency hopping radios are the kind to buy. Anything to make the life of the jammer more difficult.

Also note that GPS is pretty easy to jam. We’ll have another post up to talk about alternatives, but for now it’s important not to assume GPS will always be there. Because it won’t. Go buy a map.

Observation: Russian IADS grants air superiority
Comments/Conclusions:
Nothing new here, other than we get to see this in action. Again, these aren’t peer opponents, so this isn’t surprising. Similarly, we expected the USAF to have no trouble establishing air superiority over Iraq. The Russians have sunk a lot of money into their air defenses and it shows. So, SEAD is a key capability to have, as is stealth. This is a big reason why I love the F-35. But this is nothing new. SAMs are useful and the Russians have lots of them, news at 11. You’ll have trouble too if you’re not prepared.

Observation: Tanks generally survivable against the artillery/missile threat
Comments/Conclusions:
Again, nothing new. Minor checks ought to be done to make sure sufficient overhead armor is placed on tanks and other heavy armored fighting vehicles, and active protection systems should also be strongly considered. But the late-Soviet stuff with a full ERA kit seems to be doing just fine. Of course, it should be noted that because this is Not A Peer Conflict, the ATGM threat is pretty old-school. The Ukrainians do not have TOW II or Javelin, both of which are designed to put the hurt on tanks equipped with ERA.

Further, lacking any kind of ATGM equalizer, light infantry is at a tremendous disadvantage against the tank threat. There’s a lot of good, mobile, fighting retreat tactics out there that go out the window when your ATGMs are old and don’t work. So get the good missiles. And perhaps consider mounting them on vehicles so you can move and shoot.

Observation: IFVs and other lightly armored vehicles aren’t survivable
Comments/Conclusions:
Nothing new here, but people apparently need reminding of this one. Again. Ukrainians and Russians are riding on the outside of their BMPs in the Donbass, because those are thin-skinned deathtraps. The Russians did the same in Chechnya. Americans rode on M-113s in Vietnam. Almost makes you question if roofs are worth it. IFVs fall to old school mid-Cold War era, single-warhead ATGMS, to submunitions, and to 30mm autocannons. Maybe we should have an infantry carrier with proper armor. I wonder where we could get one of those?

The Russians and the Ukranians are developing heavily-armored IFVs. Hmm. Seems they agree with the Israelis on survivability.

Of note here is the lack of ERA kits on the vehicles. I’m not sure if this is a question of cost or if the base armor somehow isn’t enough to take advantage of ERA or if the suspension can’t take the weight. Anyway, no ERA is to be found here, and slat armor kits aren’t enough against the bigger missiles. Or against 30mm gunfire, obviously. There’s not a lot of armor on a BMP to start with, and they’re not built around a lot of weight. If you like your IFVs, consider their armor. In Operation Iraqi Freedom, the Americans added multilayer ERA kits to the Bradley and the sides of the Abrams, and found these very effective against RPG type threats. They’d likely prove effective at least against the missiles encountered in theater.

Observation: The Russian Army is relatively small, and conscript based
Comments/Conclusions:
The Russian Army is based on conscripts, and as such morale is low. They don’t fight hard, they die in droves. And here is a weakness–the Russian mothers. Casualties are an issue. The Ukranians haven’t rolled over as expected. Smaller nations in Eastern Europe should make plans to make an offensive as bloody as possible.

Parvusimperator reviews the T-14 Armata MBT

By popular demand, I am reviewing Russia’s latest Tank Of Doom, the T-14 Armata. While I usually wargame with the Russians as the opposition, as per Cold War tradition, we have more in common than you might think. We both love realpolitik, nuclear weapons, and tanks. Lots of love for tanks. We both adore tanks, expect and demand that they be the heavy hitters in combat, and scoff at the idiots who think their time is through. So let us look at the latest design from a fellow tank lover.

In many ways, the T-14 Armata is a recognition that something has to give. The Russians saw in the first Gulf War what happens when their T-72s got overmatched and had their armor penetrated: the reserve ammo cooked off, immolating the crew and sending the turret flying into the air like a jack-in-the-box. No problem, they said. This was a mere “monkey model”1 T-72. They had big, scary T-72BU,2 with the high-end Kontakt 5 ERA, that was effective at reducing the penetrating ability of APFSDS rounds and could also stop HEAT rounds without a dramatic increase in weight. Keeping the tanks relatively light was very important to the Russians, because the bridge infrastructure in Russia and the former Soviet Union was not very good, and just can’t take the weight of a fully kitted out Leopard 2A7. Plus it’s a lot easier to move bridging equipment when it has less weight to support.

But then came Chechnya, where veterans knew to shoot multiple rockets at the ERA modules, since they don’t do multihit capability. And then the West developed rounds that could get through Kontakt 5 without issue. Better modules and more base armor was needed. The cycle was to begin again, but those bridges weren’t going to get stronger on their own. Faced with strict weight requirements, the Russians decided to take the crew out of the turret. Putting them all in the hull meant less frontal armored area, which meant less armor weight. This was something confronting Western designers too–designs for the next tank made in the late 80s in the US and West Germany had a similar layout. But the Russians hit the wall first. Plus, the Russians have always been willing to try new things in their tanks.

In many ways the Armata is a profoundly Western-style tank, though it still is very light at under 50 tonnes. It has a properly strong front hull armor of what appears to be composites and steel, and it’s rated for protection right up there with its Western rivals. It is, however, not considerably better than them as far as frontal armor estimates go. There’s an all new 125mm gun, the long-barrel 2A82-1M, which has a 32 round autoloader, an all-new APFSDS round with a longer penetrator, and an all-new gun launched ATGM round. There’s a 1,500 hp diesel, though it’s in a goofy and questionable X-configuration. And there’s modern looking thermal sights for the commander and the gunner. Of the seven sets road wheels, the first two pairs and the last pair have adjustable suspension. And, straight from the factory, it has a missile approach warning radar, and hard and soft kill active protection systems3. The sides of the hull appear to have ERA skirts, though they might just be composite modules. The roof is well armored, but I’m uncertain if this contains ERA or not.

That said, the tank is brand new, so many questions remain. How good are the Russian thermal viewers: are they second-generation or third-generation? How good is the fire control computer? Can it do automatic target tracking? IFF? Can the radar be used for finding ground targets? How reliable is the new engine/transmission4 setup? How much armor is on the turret? The outer shell is clearly not tough, but there must be armor behind it or else it would be super easy to achieve a mission-kill. But you don’t need much of an armor profile internally to protect the gun, so maybe the outer shell is just for the radar and APS. And how well will the unmanned turret design work in war (or at least in exercises)? They’re gambling heavily that technology can overcome the loss of situational awareness, though to be fair, so are the Germans with the Puma IFV. Of course, there are some classified things I’d love to know too, like just how good is the main gun compared to a Rheinmetall 120mm L55, and just how good is that armor.

There is one other thing that bothers me presently, and that is how many will the Russians actually buy? They have an awful lot of new weapons programs, and while labor costs are certainly cheaper in Russia, this is a lot of new technology. It won’t be substantially cheaper than a Western tank program of similar vintage with good management, e.g. K2 Black Panther.5

But let’s get to business, and the three million ruble6 question. Would we buy one? On the one hand, politics and NATO might intervene. On the other hand, Russia will sell to anyone, and deferring to politics would be the ultimate cop out. So, let’s set that aside. Would we buy?!

In terms of raw capability, it is similar to Leopard 2A7. A worthy competitor, but not massively better than either, at least on paper and without knowing classified information all around. In terms of cost, it is similar to Leopard 2A7, high but manageable. But ammo is stored entirely separate from the crew, so it is more survivable than either. And hard kill APS are built right in. Electrics should be good, and if not, there’s a long history of adding French and/or Israeli electronics to Russian stuff. The only question might be production, but maybe we could make like India and become a partner in production with a big order to see that it actually gets done.

So would we buy one? Сделка?!

Oh yeah. We’d be all over it.

Uralvagonzavod? Сделка.

1.) i.e. a watered-down export version. The crap you sell to dodgy “friends” like Saddam Hussein, not the good stuff you keep for yourself.
2.) Better known as the T-90.
3.) So, automatically triggered visual/infrared screening smoke to hide the tank, and some kind of mini grenade to destroy missiles.
4.) It’s a twelve-speed transmission, which seems needlessly complicated to me. Also, the previous Russian diesels are all descended from the same V-12 engine family.
5.) While a simple currency conversion of the quoted price doesn’t bear this out, the ruble has lost a lot of value against the dollar recently. If we convert to an intermediate, fixed value commodity in both places (e.g. gold or big macs) as an intermediate step, we get a price that is near as makes no difference to that of the K2 Black Panther.
6.) The top prize on Сделка?!, the Russian Deal or No Deal game show.

On the Merkava Mark IV

I’ve already mentioned my fondness for the Namer. But let’s look at the other famous piece of Israeli heavy armor, the Merkava. Once again, Israeli experiences, especially in the wars of 1967 and 1973 featured heavily in designing a tank for their needs.

Despite being some of the staunchest devotees of Orthodox Maneuver Warfare, the Israelis have historically favored British tanks, which emphasize protection first, firepower second, and mobility third. The Israelis collaborated with the British on the design of the Chieftain, but after the Six Day War, the British refused to sell them to the Israelis, since the Israelis had struck first.1 The Israelis were incensed, and set about developing their own tank, the latest version of which is the Merkava Mark IV.

The Merkava has many unique features, most obviously a front-mounted engine. I’m not entirely sold on this idea, but the Israelis didn’t have access to composite armor technology when they first developed the Merkava, so they put the engine forward to maximize protection. The engine will stop a HEAT round, at the expense of dying. But a mobility-killed tank is a lot easier to replace than a tank crew, and the front mounted engine allows for a rear hatch, plus space at the back that can be used for plenty of ammo or the emergency transport of troops. A rear hatch makes it easy for the crew to safely escape a knocked-out tank, or to resupply the tank with ammo. Perfect for a defensive struggle with hordes of Syrian tanks as they surge across the Golan heights. This has stuck around, and the Merkava IV has a 1,500 hp engine up front, and a door at the back. I like the ammo capacity, but I think I’d prefer a more traditional layout and to load up with composite armor at the front.

The 1,500 horsepower engine is the MTU 883, probably the best diesel tank engine in the world today. It’s powerful, reliable, cheap, and relatively fuel efficient. And the Mark IV needs every one of those horsepowers. Wikipedia says the Mark IV weighs 65 tonnes, which is heavy. Heavier than an M1A2, heavier than a Leopard 2E, heavier than a standard Challenger 2, all of which come in around 63 tonnes. And yet, I call bullshit. The IDF is very secretive, even about the weight of their tanks. You could get fewer lies about weight if you asked Hillary Clinton how much she weighs. I have a much better source from an expert on the Merkava, who served in the IDF armored units, and he lists the weight of a Mark IV at “more than 70,000 kg”. That’s a good bit heavier. That’s heavier than the Leopard 2A7 with all the supplemental armor kits.

I might suggest the tank is heavier still. Photos of the turret with some of the armor modules removed shows that they’re mostly solid armor. I don’t know the competition, but that indicates a lot of weight, especially considering how big the Merkava is. And the 1,200 horsepower engine of the Merkava Mark III wasn’t enough. If that weighed about 63-65 tonnes, we could go from 78 to 81 tonnes without too much trouble as far as power/weight is concerned. That’s beastly. Remember, the British have been perfectly happy to add 12 tonnes of armor to the Challenger 2, and that only has a 1,200 horsepower engine. The Israelis have always thought like the British as far as tank design goes.

But enough rampant speculation. It is a big, heavy, very well-armored tank, that much is clear. I really like the turret design; the armor is very thick, even on traditionally less protected areas. There’s plenty of side armor, and more roof armor than on the turret of any other tank. And that’s in addition to a very thick looking turret face. Excellent! Hull armor is reasonably good too, with armored sponsons and plenty of armor on the hull front. The latest versions of the Mark IV even add a Trophy active protection system. More hull front armor might be nice, but the engine is there. The turret is a good shape. Protection of the hull sides, especially where the ammo is stored, leave something to be desired, since a hit in this area can cook off the stowed ammo.

I don’t have a ton of information on armor composition. Not that I’d believe it, given how much I question even the weight figures. Early marks used lots of spaced steel armor, trading weight for cost and protection. More recent marks probably use some kind of composite, something that works well in a highly sloped arrangement. It’s also used in multiple layers with air gaps in between in the turret. But given the published cost numbers, it’s probably not anything particularly exotic. It’s also not explosive reactive armor, despite extensive Israeli work on that. The Israelis are probably still trading thickness and weight for cheapish protection. However, I’m a little concerned about the armor design. Usually, composite modules are contained between inner and outer steel plates, to contain the modules. The Merkava doesn’t have the outer containing plates, so weapon hits tend to cause significant structural damage to the area around the impact point. Structural compromise beyond the area hit directly by the shaped charge jet indicates a limited ability to withstand multiple hits in the same armor module. Other designs are much better at not coming apart in the area around an impact.

I should take a moment to point out that most of the armor on the Mark IV is modular, and is easy to remove and replace for repair or upgrade, as long as a convenient crane is handy.

On to the firepower. The Merkava Mark IV has a 120mm gun, designed for high pressure rounds with an improved recoil system and stronger chamber over the 120mm gun on the Mark III. There’s also a coaxial 7.62mm machine gun, provision to mount an external coaxial 12.7mm machine gun, and another 7.62mm machine gun on the roof for the commander. There’s no machine gun for the loader though. Instead, his duties include loading a breach-loading 60mm mortar. This mortar comes from the lessons of the 1973 Yom Kippur war, and was also retrofitted to the other, foreign-built tanks in the Israeli inventory. It was used to launch starshells in the days before night vision. It’s also useful for engaging anti-tank teams in defilade, since it’s an indirect fire weapon. I really like this feature. I’m not sure about the external 12.7mm extra coax. I’d probably prefer a 12.7mm machine gun for the commander, though the Germans also seem to favor a GPMG for the roof.

Now, let’s talk survivability and ammo stowage, since those two go together. The Merkava’s large size is a big help to reducing how many crew are going to get injured in the event the armor is penetrated. About 8,000 rounds of machine gun ammo is carried, plus 40 rounds for the 60mm mortar. But that’s less of a big deal. Let’s look at main gun ammo. That’s what you’re here for. The Mark IV carries ten ready rounds in the bustle, in a pair of automatic five-round drums. The loader can select ammo type, and the drums will rotate and push it out a small hatch so he can grab it. Blow-out panels are provided over the ammo, of course. The smaller hatch makes the crew that much safer from ammo cook-off, and the automated system for selecting rounds is pretty sweet. But, 10 ready rounds is not a lot, the Leopard 2 has 15 and the Abrams has 17. I’d prefer it if there was more ready ammo.

The Mark IV carries 38 other rounds, six in the floor under the turret basket, and 32 in individual containers, 16 per side in the rear of the tank. These rounds can be removed to create space to evacuate tank crews or move infantry around, but aside from the protective containers, there’s not a lot of internal separation for these rounds. I’m not the biggest fan of this arrangement. It does predate heavily armored APCs like the Namer, and I’d prefer more isolation of ammo from crew, even at the expense of being stuck with the arrangements. Hull blow-out panels would be great here, or at least some isolation so you could get a halon extinguisher in each reserve magazine. On the other hand, the Israeli arrangement does make reloading easier, and tanks being shot at from behind are never going to fare well.

In terms of electronics, the Mark IV is right up there with the best of the West, with thermal sights and laser rangefinders for the commander and gunner, a battle management computer system, and a modern fire control computer complete with automatic target tracking. The Israelis also are the only Western country to produce the LAHAT, a gun-launched ATGM with semi-active laser homing guidance, providing extended range for the main gun. Currently, they’re fitting Trophy active protection systems to the Mark IV, because it’s not yet hard enough to kill.

So, when all is said and done, would we buy, if they were available? Would we prefer them to our chosen Leopard 2E?

No.

The Leopard 2E is better suited for conventional warfare, with massive frontal protection2 and the best production tank gun in the world. The Leopard 2E’s 120mm L55 gun is rated for more pressure than even the enhanced, Israeli-made 120mm L44 on the Mark IV. The Leopard 2E’s armor is properly encapsulated, so it won’t come apart around a hit area. It’s not difficult to add active protection
to the Leopard 2E, or the Abrams, or any other new tank. And the Leopard 2E even comes with improved roof armor and supplemental armor kits for the turret sides, hull skirts, and underbelly. So it can become almost as good at urban warfare. It’s just a better tank all-around, not being excessively optimized for incursions into Beirut.

1.) Apparently, striking first isn’t cool anymore, even if your enemy is preparing to strike you. Lame.
2.) As it should be.

The CAS Conundrum

Assume a peer opponent, like the Soviet Union in its glory days.

Wait, no. That’s hard to think of. And not necessary.

Assume a relatively peer-ish opponent. Or even semi-peer. The diet coke of peer will do in a pinch. Maybe it’s a revanchist Russia, maybe China, or maybe just someone with their head screwed on right, like Serbia in the late 90s. Someone who has built a nice IADS. Invested in air defense. Trained on it. Got them in your head? Good. Now you’re at war…

We, of course, want to provide air support. And air support can take the form of interdiction or CAS, close air support. Right up at the line of contact. There’s plenty of good historical examples of how to do this right. And it’ll bring decisive firepower to assist. It’s worked in basically every war since the Second World War. If you can bring airplanes to help, you’ve got yourself a big win. And right at the front lines is where it matters the most. But the enemy is going to try to stop you, and therein lies the problem. Let’s consider those defenses.

As far back as the 60s, big medium and long ranged SAM systems were trouble. Remember Gary Powers? Okay, there’s that peer competitor again. But plenty of F-105s and even mighty B-52s were shot down by SA-2s over Vietnam. There. That’s not very peer. The SAM threat was bad. One counter was to build up a big strike package with SAM-suppression aircraft and jamming support. That’s perfect for the interdiction mission, the deep strike. But what about the CAS mission? Are we doomed?

No, we fly low! Perfect. And this is the approach of choice for the Panavia Tornado and the A-10 and the Su-25. If we’re doing close air support, and it’s the 60s or 70s, we only have to worry about anti-aircraft guns. And not like the big 12.8cm guns that defended Berlin in ’44, but small, mobile units. 23mm autocannons are the standard size for Russian units. So the A-10 was built to take shots from those 23mm guns, and it was built around a massive 30mm autocannon that outranged the Soviet 23mm guns. It could win a ‘high noon’ duel with the defending 23mm batteries, and then tear tanks apart with more 30mm gunfire plus bombs.

Perfect. Except that nobody likes to be looking at a losing score up on the board. The Soviets love their tanks, and they weren’t about to sit around while they got torn up from the air. They had enough of that back when they were facing Ju-87Gs back in the Great Patriotic War. They doubled down on missiles, specifically short range missiles. And here was the hard counter they were looking for. Short range systems, plus the famed MANPADS like Strela-3, Igla, and Stinger.

In 1991, lots of aircraft came at the Iraqi air defense system at low level. Again, we had the Tornado and the A-10 as big users of the attack profile. Both were not only doctrinally constrained to low-level attacks, but also had weapons systems that required the aircraft to fly low to be effective. And both aircraft took some significant losses, which forced changes in attack profiles. Back up to medium altitude, where they were relatively safe because the Iraqis weren’t very good at protecting their bigger (and longer ranged) SAM systems from coalition air defense suppression assets.

The Soviets experienced basically the same thing in Afghanistan, once the Mujahedin got Stingers. This forced their aircraft up to medium altitude, where they were safe from the missiles.

And now it gets worse. First, we’re not really doing close air support anymore. We’re dropping from altitude, and can’t actually see the guys on the ground. So we’re dependent on communicated coordinates. Don’t screw that up, or else the bomb might hit you.1 Second, at medium altitude, that big awesome gun on the A-10 is just a lot of weight and drag.

But, no problem, right? We can just use a bomb truck with plenty of gas, like the A-6E. That even has a lot of built-in targeting systems to squeeze maximum precision out of dumb bombs. The even bigger F-111 is another good choice. Or it would be except for those surface to air missiles. We saw in 1999 that an army with old, reasonably mobile SAMs like the SA-6 could make life hell for an attacker by using clever tactics, decoys, and good emissions discipline. And they didn’t even have the widely-exported S-300 family, which are much more formidable.

At medium altitude, there’s no cover, and a bomb truck like an A-6 or an A-10 isn’t going to be able to shake SAMs very well. There is another way to beat the big SAMs though: stealth.

As Muhammad Ali would say, your hands can’t hit what your eyes can’t see. A little route planning, and boom. They won’t be able to touch you. Stealth is cool, but it demands internal carriage of weapons and not being predictable. Both of which make CAS extremely difficult.

But CAS is not doomed. And I’m not about to give the skeptics victory. The Small Diameter Bomb is a good start, since lots of those can fit in a stealthy 5th generation fighter. Remember, the formidable Stuka generally didn’t use giant bombs, and we have way more precision than Rudel could have dreamed of. Plus, we could always loiter on standby near, but not over, the battlefield. And we don’t have any good examples of a stealthy midsize bomb truck. We have big fighters like the Raptor, but only small bombers. A stealthy plane with some bomb capacity would be perfect here. Something F-22 sized or a bit bigger that can haul a decent bombload internally.

1.) By ‘might’, I mean ‘will,’ thanks to that asshole Murphy.

Attack Helicopters for the Modern Army

Yes, I’m finally getting around to replying to some of Fishbreath’s stuff. You’re probably wondering what attack helicopter we in Borgundy like. The Boeing AH-64E Apache Guardian, with the Longbow fire control radar setup. Duh. Best in-class. Next question.

Why do we like the AH-64E? Mostly on account of being the baddest tank killing thing with rotary wings, and that’s due to the phenomenal Hellfire missiles. It’s got the fancy millimeter-wave fire control setup so that it just has to poke the radar over a hill, or have a fellow helicopter do so, and it can literally rain hellfire on its enemies. Way cool.

This is hardly fair though. The AH-64E has gotten a lot of development money, and the alternatives have stagnated. And the single-seat Ka-50 is basically stillborn.1 The Ka-52, which hasn’t done well at exports, is a two-seater. Well, life and procurement games are hardly fair. But this is shaping up to be a dreadfully short piece, and simply adding tactics will make it boring, so let’s make it interesting (and also add tactics).

What helicopter would we choose if it was 1990? The Ka-50 has just entered production, and the Soviet union hasn’t collapsed yet. We’d still go with the Apache (then, it was the AH-64A, and it was made by McDonnell Douglas, who hadn’t been bought buy Boeing yet). A good chunk of that is political; we’re firmly in the West’s camp. But that’s the cop-out reason. Straight up, the AH-64A/Hellfire combo is still best at what we want it to do: kill tanks. Being semi-active laser homing, the Hellfire can be fired somewhat indirectly, as long as there’s some laser emitter to illuminate the target, the helicopter needn’t be exposed. Hellfire missiles can also be salvoed faster, since the laser only needs to be on target for guidance, not at launch. A ground launch option is available. Oh, and the tandem-HEAT warhead on the Hellfire is really big. So it’s probably going to kill what it hits.

Now we get to the tactics. What are attack helicopters for? Well, we see them as a much more successful manifestation of the ‘tank destroyer’ concept. Helicopters can move much faster than ground vehicles, so they’re perfect for rapidly moving to provide support or counterattack a breakthrough. I don’t have a cute metaphor for this, other than maybe to call them ‘plumbers’.2 They’re to kill tanks first, other vehicles second. So, the powerful, accurate Hellfire missile that can be fired rapidly is just what we need.

I should probably take a moment to point out that deep strikes with attack helicopters are a bad idea. They don’t fare well when lots of things can shoot them, as evidenced by losing one to a flak trap in Operation Iraqi Freedom. They’re not very good at dealing with SAMs, so they need to use terrain to avoid them. Since they fly low, they’re also vulnerable to AAA fire. Again, it’s about speed and using cover and concealment effectively. They’re not well suited to forcing the SAM to dodge, since they’re not very fast.

That aside, we’ve mostly been talking about missiles, not about helicopters themselves. Let’s look more at the Apache and the two-man layout. A two-man crew is perhaps the most intuitive solution. There are two things that need doing: weapons employment and flying the helicopter. Since flying the helicopter is *hard*, and semi-active laser homing weapons like the Hellfire still require quite a bit of operator input for target discrimination and selection, we might naturally choose to have a crew of two, like the engineers at Hughes/McDonnell Douglas did. Or those at Bell, or those at EuroCopter, or those at Mil.

I generally like a crew of two in combat aircraft. In the fighter realm, the statistics show that for comparable types, the two-seat fighters tend to do better, since they have two pairs of eyes available. This is even more helpful for the attack helicopter, since spotting ground targets is notoriously difficult. Also, two sets of eyes to spot return fire is very helpful, since it’s easy for the gunner to get ‘tunnel vision’ when prosecuting targets. The pilot can maintain overwatch for tracers or missile launches, or keep the helicopter moving. These tactics of attack on the move have been heavily used by Soviet pilots in Afghanistan after Stinger missiles were introduced to the conflict, by American pilots in Vietnam, and more recently by Russian pilots in the Syrian intervention. Movement is good. Movement is life.

Hovering is not a good idea from a long-term survivability perspective. In addition to dedicated anti-aircraft assets, most modern IFVs and some modern MBTs have targeting systems capable of nailing attack helicopters if they hover for a while. Fishbreath and I can also testify that even an old-school T-55 can bag you if you sit pretty and hover for a while. If you’re gonna hover, you have to pop up from some kind of cover, engage, and drop back down (and relocate). Again, that second crewmember allows for a rapid transition to movement to avoid incoming fire, and he can keep his eyes up while the gunner is engaging targets. Or just be looking around and planning where to pop up from next. He can route plan while the gunner hunts targets.

One nifty feature of the Apache in particular is that the pilot has his own independent thermal viewer to let him see at night or in foul weather. The pilot’s thermal camera is slaved to his helmet. Night fighting and operations in harsh weather conditions are also better with the split workload, and the Apache has the vision tech to facilitate this. The Ka-50N might have rectified this a bit, but that was just a prototype, and we don’t know how well it would have done at night.

So there you have it. While you could operate an attack helicopter with a single man crew and appropriate automation, they’re better with a two-man crew. More combat effective. None of this precludes operating attack helicopters in groups; more helicopters are better. And yes, you’ll pay a bit more for the American-made Apache, and you’ll pay more for two crew. But you get more. This is the helicopter that armies want. This is the helicopter foreign designers wish they made. This is the most effective attack helicopter available. The choice is clear.

Geronimo would approve.

1.) Don’t worry, Fishbreath. I’ll be sure to say something pithy at its funeral. And then drink a bunch of good vodka and gloat.
2.) Because they stop leaks, get it? A trifle Nixonian though.

Luchtburg Responds: an IFV for the rest of us

Parvusimperator is fond of a certain sort of infantry fighting vehicle: it should be big, heavy, share parts commonality with his tank, and transport a whole platoon of infantry. It may come as a surprise to you that this is not the only sort of IFV1.

The Hoplon, parvusimperator’s design, fits certain scenarios very well: your Golan Heights, your Fallujah, perhaps your Fulda Gap. Those sorts of scenarios are important, but in exchange for its superb performance there, the Hoplon gives up some other capabilities that other IFVs offer, and other IFVs can be nearly as good as the Hoplon in the Hoplon’s preferred field of play.

I’ve always been a BMP-3 fanboy, so we’ll talk about the Hoplon and Namer relative to the BMP-3. We’ll kick things off with the biggest difference…

Mobility
Otherwise known as the dreaded M word. The BMP-3 is the obvious winner here. Its advantages stem from its weight: fully kitted out, it tips the scales at less than 20 tonnes.

This means that it need not bother with complicated, failure-prone fording mechanisms. It can simply swim its way across a river. That’s right: it’s fully amphibious, which is an important quality for an infantry-carrying vehicle. Mechanizing infantry usually improves their speed of tactical movement while reducing their ability to cross or occupy rough terrain. An amphibious IFV actually adds some terrain-crossing ability: infantry can’t really cross or occupy a river on their own. More generally, a lighter IFV leads to enhanced tactical mobility overall: lower ground pressure means lighter vehicles can move across a wider variety of terrain, in which another vehicle might bog down2.

Enough about tactical mobility, though. There’s another kind of mobility where the heavy IFV concept falls down: the capital-M sort, Strategic Mobility. How many Namers or Hoplons can you fit into your C-130? Zero. How many BMP-3s? One! How many Namers or Hoplons can you fit into your C-5? One! How many BMP-3s can you fit into your comparable An-124? … six.

Now, airlift is not the be-all, end-all of strategic mobility, but, being the hardest part, it’s a good place to start. Certainly, airlift is the way you want to move your stuff when it absolutely, positively has to be there tomorrow. Being able to fit your IFVs into your smaller air transports, freeing up your big transports to move tanks, is a significant win for putting a mechanized force somewhere fast. You can get by with rail and road transport if you’re a purely continental power, but I would suggest that the world is too complicated a place for anyone to call themselves a truly, exclusively continental power.

A lighter vehicle is also somewhat easier to transport by rail: it doesn’t call for specialized rolling stock, whereas your standard flatbed rail car would be hard-pressed to stand up to a Namer-sized vehicle. Road transit is also easier, because of reduced road wear, and again, a lesser need for overspecialized vehicles.

Ship-based transport is a wash, but you can put just about anything on a boat. Hoplon or Namer don’t get any points for being easily transportable that way.

Armament
We should start by talking about what an IFV needs to do. Infantry are versatile, able to do almost anything on the battlefield; their vehicles ought to be too. This is why most IFVs have an autocannon armament. The autocannon can engage fellow light vehicles, enemy infantry, aircraft, and to some degree, dug-in positions. You’ll note, however, that tanks are not on the list. Although infantry armed with proper missiles represent a serious threat to tanks, IFVs, generally, do not: they don’t hide as well as infantry, and unlike infantry, they can’t spread out for protection against deadly point fire. IFVs equipped to defeat tanks are therefore so equipped for purely defensive purposes: anti-tank missilery is not a headline capability on an IFV. Ideally, your IFV won’t be in evidence when the tanks come a-knocking; that’s why you have infantry antitank teams.

On to the BMP-3, then. It does indeed have an autocannon: the 30×165 2A72, a variant of the 2A42 you might know from past Ka-50 posts. The 30×165 cartridge, while a little lighter than the NATO-standard 30×173, is nevertheless quite punchy, by IFV standards; the BMP-3 carries 500 rounds split between high-explosive and armor-piercing types. Little needs to be said about the autocannon. It’s an autocannon. Every ex-Soviet state and Russian arms buyer in the world uses this one. It works as advertised.

Next, though, the BMP-3 goes a little bit off-script. Mounted coaxially with the autocannon is a 100mm rifled medium-velocity gun. “But why?” you ask. “That’s way too small to shoot at a tank, and the autocannon is good enough, right?” Not altogether! You may recall the infantry tank from the Second World War: a bad idea, but one based on a germ of truth. Infantry don’t have a good way to deal with a really stout dug-in position. Launchers can help, but tend to be short-ranged and inaccurate. Mortars are nice, but they’re an area weapon. What the infantryman really needs is a good-sized, say, 100mm HE-chucker, able to keep up with him as far as terrain crossing, and able to bear rapidly on any intractable enemy defensive position. So, stick one on the IFV. The BMP-3’s 100mm gun is an infantry support gun, which is important tactically, but also logistically: it doesn’t have much in the way of anti-tank use, so what ammunition it carries is all for, y’know, supporting the infantry.

Which isn’t to say it has zero anti-armor use. It carries eight gun-launched missiles; although they won’t do much against a modern tank, they provide an extra-long-range punch against lighter enemy vehicles.

Three 7.62mm machine guns—one coaxial in the turret, and two bow guns, each with 2000 rounds of ammunition—round out the weapons fit.

What it comes down to is that the BMP’s armament is hyper-focused on its role as an infantry fighting vehicle. It doesn’t faff about with anti-tank weapons it should never have reason to use, if deployed correctly. It simply gets on with the business of employing every piece of hardware it possesses to defeat the sorts of enemies the infantry it carries is most likely to be facing.

Protection
We come now to a category where the BMP falls down a little compared to its HIFV competition, but really, of course it does. They’re literally tanks, with the tanky bits taken out and seats put in. It isn’t like I was somehow going to miss this one. I just don’t care, and here’s why you shouldn’t, either: doctrine. I gave three scenarios where the Hoplon-Namer school of IFV design excels: the Golan Heights, the Fulda Gap, and Fallujah. Let’s look at each one.

The Golan Heights, as parvusimperator mentioned, is probably one of the most featureless regions on the planet which is nevertheless worth fighting over. It’s flat, and there’s nowhere to hide. If the enemy can see you, the enemy can peg you with a missile. Now, if you’re advancing in proper combined-arms fashion, with your tanks and IFVs working in concert, what happens? They shoot at your IFV and it shrugs off the hit, or they shoot at your IFV and it dies, but either way, they aren’t shooting your tanks. The tanks are your true breakthrough weapon: IFVs are just there to deliver your infantry to hold the ground you’ve just captured with your tanks, and to provide some extra punch when they get there. Losing a few doesn’t matter; tanks are the bigger, juicier target, and a combined-arms advance against an ATGM-equipped position should rightly see most of the missiles headed for the tanks anyway.

The Fulda Gap presents different challenges. You (presuming you’re a Western power) are on defense. You’ll be facing tanks and IFVs pouring through the West German forests, but you have the edge: you get to dig in, which nullifies a lot of the survivability edge. Missiles mounted on the IFV are less of an advantage in this scenario, because your men can simply dismount and use their own ATGMs.

In Fallujah, the Hoplon’s edge is slightly more pronounced: it can eat an RPG shot from the front, and that helps when you’re turning a corner or going down a long street. That said, you’ve taken your armored fighting vehicle into an urban area. That is not a low-risk proposition. You’ll want a TUSK-style kit however heavy your IFV is: if Big Army and the United States Marines found that the Abrams needed specific upgrade kit to be safe and effective in cities, your IFV is going to need the same3. The single most important upgrade out of your TUSK kit is slat armor, which is lightweight compared to real armor, and will do a number on that most common urban threat, the RPG.

Beyond that, an autocannon and coaxial machine gun alone are insufficient armament for city fighting. Much better to have a 100mm HE-thrower, so you can bring down the front of a building in response to an RPG shot, and some independent machine guns, so you can hose down multiple targets at once.

Ergonomics
We come to the BMP’s weakest point: its ergonomics. Tank-based IFVs and APCs have cavernous internal spaces and proper rear exits. For some reason, the BMP-3 puts the engine where that rear exit ought to go, robbing the troops inside of both convenience and survivability4. Getting out of a BMP involves at least a little bit of climbing.

In this picture, you can see the troop compartment: once you go over the engine (the raised section beneath the opened top doors), you drop into the troop compartment, which is behind the turret. (The turret’s fighting positions are enclosed by the two white pillars.) Three seats are placed with their backs to the engine compartment, and two are placed on either side of the turret base. Two more jumpseats can be folded down between the three seats in front of the engine, but five is a good capacity estimate for troops carrying any real amount of gear.

To get in or out, you have to do one of two things: open the top doors and jump up onto the engine, or leave the top doors closed, and crawl out the back. Neither one is as fast as a traditional rear door, and the safest way—crawling—is much slower. If you’re willing to further handicap your exit speed, you can probably stash some gear on one of the crawlways, which might be handy if you’re carrying an ATGM team, say.

Really, though, the BMP’s design follows its ergonomics. It’s almost purely an infantry support vehicle, which can incidentally carry five infantrymen. I don’t know what the prevailing Russian doctrine is, but the BMP is not a good battle taxi. Its job, as far as carrying infantry goes, is to get them close to the battlefield, not reliably serve to move them around thereupon. Once the infantry has disembarked, preferably somewhere out of direct enemy fire, they can advance with the BMP in support. It can serve in the battle taxi role—it’s quick, has decent terrain-crossing ability, and can fit an admittedly small number of infantry—but that is not its natural home.

Luchtbourgish Advantages
The BMP requires some doctrinal modifications relative to your HIFV or HAPC: namely, in situations where it is likely to encounter tanks, it must be used in close concert with tanks, and in combat generally, the infantry should be disembarked earlier and fight their way to their stopping point, with the BMP providing fire support. Urban survivability requires specific urban survivability upgrades5.

These modifications may not be for you. I don’t think they’re for parvusimperator or Borgundy. Survivability in a limited area of operations is too important for his purposes. Luchtburg, however, is a different story.

The mobility of lighter IFVs, and the BMP particularly, meets a Luchtbourgish need. The country is mountainous, swampy, and filled with rivers. An IFV which can swim has a huge mobility edge over one which doesn’t: it can easily penetrate the Luchtbourgish interior where a heavier vehicle or a tank might get bogged down.

The armament fit is perfect, too: busting up a cartel camp in the jungle is tricky with infantry or lighter vehicles, because the drug lords have moderately heavy weapons; an IFV which can take hits from machine guns and grenades while dealing out heavy punishment in return is ideal for Luchtburg’s aggressive enforcement of anti-cartel laws.

Finally, air mobility is of critical importance. Luchtburg is an expeditionary power with global interests. The BMP-3 is easy to ship rapidly, which lets Luchtbourgish forces enter the fight faster, which helps protect Luchtbourgish interests worldwide.

  1. You’ll recall that parvusimperator also recently wrote on the Namer, Israel’s ‘IFV’, but that’s more properly a heavy APC, its own class. It’s designed to transport infantry in safety exclusively, not to provide added firepower on the battlefield.
  2. Heavy APCs and heavy IFVs (Namer and Hoplon) have tank-like ground pressures of 12-15 psi, ordinarily. Standard IFVs (the range from the BMP-3 up to, say, the unupgraded Puma) tend to be in the 6-8 psi range, which is approximately the range of a standing human.
  3. Unless you’ve bought Namer, but Namer is basically frontal-strength armor all around.
  4. Don’t get me wrong, putting the engine in front of the troops is bad for the engine if you take a hit, but it’s better to lose an IFV alone than it is to lose an IFV and everyone inside it.
  5. Surprisingly, I don’t think the Russians have any. I can only find one or two pictures of real BMPs equipped with slat armor. (ERA and active anti-missile systems are obviously out for a vehicle intended to operate closely with infantry.) The rest are kitbashes. Parvusimperator says the Russians were mostly concerned with plunging fire from tall Chechnyan buildings and mines, so they didn’t bother. Frontal and side-on shots are still plenty likely in lots of the world, though, so I stand by this recommendation. Or just slap ERA on and establish a minimum safe distance, though even the Russians aren’t quite that cynical. (The Americans have done this on Bradleys with good results in Iraq. -Ed.)

This Old Flanker

Hi, I’m Bob Villa, and welcome to This Old Fighter. Today, we’ll be looking at a classic late cold war fighter that always impresses on the airshow circuit: the Sukhoi Su-27. NATO reporting name: Flanker.

The Sukhoi Su-27 Flanker is a very interesting fighter. It’s somewhat analogous to an F-15, but since the Soviet Air Force wasn’t big on midair refueling, they designed it to be very large so it could carry enormous quantities of fuel internally. It’s got some phenomenal aerobatic capabilities, but suffers from a general lack of payload for its size and some less than stellar reliability numbers. That said, it’s also cheap, and Russia is an infinitely more loyal and useful friend than America these days. Supposing one were to buy some Zhuravliki1, what would we get in them?

Let’s talk engines first. We’re looking for power in an afterburning turbofan. Best in production is the 142 kN AL-31F1S from Saturn Lyulka. Stretching things a little, the AL-31FM2, currently in testing, can put out 145 kN of thrust with afterburner. We’ll also want 3-D thrust vectoring here, with nozzles that can move in both pitch and yaw directions. Thrust vectoring requires some extra training however, as it can cause the aircraft to bleed energy too quickly. Still, it’s a nice extra edge pioneered on some Flanker models in the 90s.

Now, sensors. The Flanker doesn’t have AESA available just yet, we’re stuck with PESA. But, Rafale also has PESA, and Eurofighter still uses mechanically-scanned arrays. However, the Flanker has a really big nose radome for a large, powerful array. The best radar available is the N0035E Irbis-E, which is mechanically steerable to increase the maximum deflection angle of the beam. It’s got a 20 kW peak power, 5 kW average power, can track 30 targets at ranges of up to 400 km, and can engage 8 simultaneously. Way cool. Even the original Su-27s came with IRST and helmet mounted sights, so no special add-ons are needed here. One of the more interesting features of some late model Flanker prototypes, which we’ll put to use, is the N012 radar in the tail boom between the engines. This has a range of about 60 km for fighter sized targets, and is primarily designed to help warn of approaching rear threats. It’s also used to cue the defensive systems. There’s an improved version available, the Pharaon, which gets about 15 km more range for the “fighter size test target”. We’ll call for the Pharaon aft.

In terms of hardpoints, more is better. More specifically, we’ll go for the extra underwing hardpoints introduced in the 90s. The Russians wanted to facilitate the use of wingtip jamming pods like the Knirti SAP-518. But, those lose the wingtip rails, so Sukhoi added an extra pair of underwing hardpoints to take the short-range AAMs that would normally go on the wingtips. So, our Flankers will have a total of fourteen hardpoints: two wingtip, four under each wing, and four under the fuselage. Two of the underwing hardpoints will be plumbed to permit the installation of drop tanks, for an extra 4,000 L of fuel. We’ll get a pair of SAP-518s with each Flanker courtesy of Rosoboronexport. Why the Knirti pods? Well, since they’re also Russian, we can probably get a deal on the whole package. Plus, they’re some pretty powerful jamming pods, capable of jamming in the 5-18 GHz range. They’re modern, digital radio frequency memory jammers, so they’re better at emulating complex waveforms. Plus, with two pods widely spaced out (wingspan is 14.698 m), we can use crosseye jamming techniques to spoof incoming active-radar guided missiles. While we’re talking self-protection here, we’ll want to include a missile approach warning system (integrated with that snazzy Pharaon), the usual chaff and flare dispensers, and a Kedr2 towed decoy.

Now, let’s talk about aircraft structure. Our Flankers will have canards, to maximize agility. Also, because canards are cool. Some Flankers have opted against canards to reduce weight and radar signature. Our response is that it’s a Flanker. It has an elephantine radar signature and the addition of more control surfaces isn’t going to change that much. We will replace old soviet era hydraulic controls with shiny new quadruplex digital fly-by-wire controls. Since we have a digital flight control system, we can delete the dorsal airbrake to save a little weight, and get the same airbrake effect with differential deflection of the rudders.3 We’ll also reinforce the frame and the landing gear to deal with the increased weight. Our landing gear will be the dual nosewheel type, instead of the single nosewheel of the base model Su-27. Internally, we’re going to use all that space for 11,500 kg of internal fuel. And, of course, we’re going to opt for the midair refueling boom. How could we not?

In the cockpit, we’ll go with the center-stick version of the HOTAS control set. We will also use the conventional throttles; I’m not a big fan of pressure-based controls. The tactile feedback of actually being able to move the controls is nice. Avionicswise, we’re going non-Russian. More specifically, Franco-Israeli. The HUD comes from Israel: the Elbit Su 967, with it’s holographic displays. We’ll use a pair of Thales 12″x9″ (WxH) LCDs to display flight information. We’re not opting for touchscreens here. We prefer the traditional array of buttons around each displays. We don’t think touchscreens are robust enough yet, and prefer the tactile feedback and muscle memory that we can get with physical buttons. The Russian Zvezda zero-zero ejection seats are fine, and we won’t bother to replace them.

That’s it. One awesome Flanker. Since we also have an ego that’s almost as big as Russia, and we like to confuse defense analysts, rather than name this something sensible like Su-35MKB, we’ll insist that it be called Su-374. We might even recycle the old ad copy and call it the Su-37 Terminator.

1.) “Baby Cranes”. Because flankers are cute and adorable and above all small.
2.) Roughly analogous to an ALE-50.
3.) The Super Hornet uses a similar method.
4.) There’s already a Su-37, but that designation was applied to a pair of experimental demonstrator aircraft around the early 2000s. They did not go into production. This one will.