To work out our short to medium range air defense system, it’ll help to see how it plugs in to the rest of our integrated air defense network. We’ll bracket the problem by working out our man-portable system first, then our long range system, and then we’ll fit our challenge answering system in between.
For man portable air defense systems (MANPADS), there are two schools of thought. One is typified by the famous FIM-92 Stinger, and relies on some type of infrared seeker for guidance. This one is much more common. The other system, typified by the RBS-70, uses a semi-active laser homing guidance method.
On the one hand, the Stinger is easy to use. Acquire target, get tone, shoot. The operator does not need much training, and the missile is fire and forget. Plus, there are no emissions (like radar or lasers) to give the missile launch away. On the other hand, IR guidance is commonly used in short range missiles, so infrared countermeasures are common. A large part of the success or failure of Stinger-type missiles depend on the relative strength of the seeker design and the countermeasure systems on the opposing aircraft. The RBS-70 is not fire-and-forget, and requires a trained and keen operator. The laser-homing seeker is much harder for an aircraft to spoof, and is generally considered only counterable kinematically. This is a problem for all MANPADS; they must be small to be able to be carried by the infantry, so they don’t have much room for launch motors. That said, not having any kind of big obvious radar makes them much harder to suppress. Kinematically, the most formidable missile in this size class is the British Starstreak, which has a nice range advantage over its competitors and achieves the astonishing speed of Mach 3.5. Starstreak uses a SALH seeker, and an interesting warhead that requires a hit to work (i.e. it has no proximity fuze). Given the missile’s speed and the size of other missiles’ warheads, this is probably not much of a disadvantage. Starstreak uses the nigh impossible to decoy SACLOS guidance system, which is training-intensive. However, even for this most modern of the SACLOS system, manufacturer claimed hit probabilities are significantly lower than those of contemporary IR guided weapons. This might have been somewhat rectified by the auto-tracking system that the British had planned to develop for Starstreak, but this has been cancelled.
Looking at IR guided missiles, the seeker is key. Range, performance against countermeasures, and Pk all depend on the seeker. Of the IR guided missiles, most modern ones have a two-color seeker. A focal plane array seeker would be better, but none are currently available, so range is more or less equivalent, as is countermeasure resistance. Some variation in counter-countermeasure capability can be expected based on software updates, but these don’t really put one model ahead of the rest. Interestingly, the French Mistral 2 sacrifices weight for kinematics, and is capable of an astonishing Mach 2.5. It’s not as good as Starstreak, but it’s far ahead of the competition. That said, it’s very heavy, and can only be fired from a tripod platform or from a vehicle mount. Ready to go, Mistral 2 in launcher weighs about 40 kilos or so, more than twice that of Stinger. We’ll take the mass produced, lighter, cheaper Stinger. We nominally deploy a platoon of MANPADS per battalion.
How does Stinger stack up to the Russian systems that Fishbreath hasn’t allowed me to buy? Pretty well. Stinger is pretty similar to Igla-S, with a bit of a larger warhead and slightly better range. Newer Russian systems (the Verba) come with a three-color IR seeker, as opposed to the two-color of Stinger, so that’s a seeker advantage to the Russians. Verba should be better at distinguishing between real targets and decoys. Overall, the missiles are quite comparable. Stinger also has the very neat M1097 platform, which I’ll get to later.
MANPADS only gets us so far though. It’s mostly an ambush sort of weapon. It’s great for pegging helicopters or low flying aircraft, but it’s not that hard to switch to a medium-altitude attack profile and avoid the pesky little missiles entirely. So we’ll clearly need something bigger, which brings us, as promised, to our long-range air defense system.
The western standard long-range surface to air weapon system is the MIM-104 Patriot. It’s got a PESA radar, was the first in the world to network effectively with other air defense components as well as AWACS, and has been proven in combat. It has some notable shortcomings, including not providing all-around radar coverage and using towed components rather than self-propelled ones. There’s also the issue with the latest missile, the PAC-3, having relatively limited range. This missile problem also plagues the MEADS system, which uses the same PAC-3 round. MEADS does have much better radars than Patriot, and uses solely self-propelled vehicles. However, it’s not actually ready yet; while it is on offer, the buyer would have to toss money at it to finish development, which has left it out of the running in several recent contests. In general, Borgundy doesn’t like to be the first to adopt something, so MEADS is out. Plus, waiting sucks.
The other alternative is SAMP/T, a land based Aster system. While its radar provides all-around coverage, it lacks the range and power of the Patriot’s radar, being based on the smallest and least-capable naval Aster-compatible radar system. Patriot brings many more available missile types, having an ABM-ready missile in the PAC-3 and an anti-ECM aircraft missile in addition to the regular SAM. The Patriot missiles have longer range and slightly more speed (Mach 5 v. 4.5), but use track-via-missile guidance, as opposed to the Aster’s active radar homing seeker. Track via missile is cheaper (for missile components) than active radar homing, and doesn’t give the distinctive warning of an active-radar seeker, but is dependent on that main radar, so it’s vulnerable to ARM attacks as well as escaping the envelope or breaking line of sight. All that said, we still think the Patriot is the better buy. It’s proven interoperability is a big edge, and we can expect future upgrades, since the US has opted to keep upgrading Patriots rather than go with MEADS. We’d really like to see MEADS radars and some of the fancy plug-and-fight capability of MEADS make it’s way over to the Patriot system.
How does Patriot compare to Russian systems? Well, the latest Russian system, the S-400 (which is a lot more expensive than Patriot, strangely enough), has a really long range missile, and Patriot lacks anything in the same range class. However, such a missile has serious radar horizon issues, and I wonder what targets it’s designed to engage at 400 km. Probably AWACS or incoming ballistic missiles, since anything else would be able to make a turn or something and make the missile miss. Otherwise, the systems compare quite favorably. The regular SAMs on the Russian systems are pretty comparable to those of Patriot as far as kinematics goes. Sensorwise, the Russians have a bunch of cool options like a radar-on-a-pedestal to help provide locks on low-flying targets. On the other hand, Patriot has a much better networking system, specifically when it comes to networking with other things that aren’t SAM systems. Just like the US Navy’s Aegis SAM system, Patriot can network with the F-35 Lightning II for targeting data to cue and guide the missiles. S-400 can also network with other systems, but not as well as Patriot. It certainly can’t use a Su-35 for targeting data directly. The S-300 systems can really only network with other missile systems, and they don’t do this very well.
Now let’s examine the medium-range problem presented by Fishbreath. We need to fit something in between the Stinger and the Patriot. We’d like it to be able to network with the Patriot system as well as other air defense assets, and we’d like it to be reasonably mobile. And, the western SAM market being what it is presently, there aren’t that many options. Roland and Rapier are out of production, and both are rather archaic. Rapier also fails to meet mobility requirements. It may also help to consider how the system will be deployed. As we’ve said, MANPADS are generally deployed at the battalion level. The Patriot system is quite elaborate, and as such it’s not going to be the best choice for covering a fast moving armored assault. We would expect Patriot missiles to be deployed at the Corps level if at all in an operational theater. Like most longer range systems, they’re much better suited to protecting big zones and large fixed targets. There are a couple upcoming SAM systems that look promising: CAMM and LFK NG. Both of these seem like formidable options, but aren’t available yet. We could wait. We could also make do with some older systems, like buying used Rolands or trying to get France to keep the Crotale lines open. But we won’t, because (a) that’s rather poor cricket, as Fishbreath would say, and (b) there’s an obvious system that meets all of our needs and then some: NASAMS II.
NASAMS II was originally developed for Norway’s air defense needs. It was originally designed to fire the AIM-120 AMRAAM, but launchable missiles have been extended to include AIM-9, IRIS-T and a RIM-162 ESSM variant with the AMRAAM’s active seeker. The system is designed to have high network interoperability and pull data for targeting from other platforms. It can also use it’s own radar, which is usually either an AN/TPQ-36 or an AN/TPQ-64. The -64 is the radar used with the latest variant of the venerable Hawk SAM system, so these are pretty common and not all that expensive. Alternatively, since the missiles all have either active radar seekers or IR homing seekers, the launchers can fire off of external references only, which is perfect if they’re on the move and caught with the radar out of position. The launcher is a rather simple affair that can be mounted on the back of a truck. An alternative rail-type launcher can be mounted on the back of a HMMWV. Plus, we were already going to buy AMRAAMs, ESSMs, and either AIM-9s or IRIS-Ts, so we don’t need to stock another missile. Being a rather simple system, we expect costs to be low, for once.
Compared to Crotale, we can get better guidance options with either IR or active radar seeker in NASAMS II. Crotale uses radio command guidance, which also requires either IRST cueing on the launcher or radar cueing from the launcher. Radar cueing can be particularly dangerous for short range systems, since they’re quite overmatched in range by anti-radar missiles. Compared to the nearest Russian equivalents, the launch system is going to be cheaper than the SA-15, but that’s not strictly a fair comparison, since NASAMS doesn’t have a radar of its own and Tor does. As a battery with radar(s) command vehicle and several launchers, NASAMS II is pretty similar to Buk. The missiles are somewhat less well performing, but cheaper. It networks much better though, and the launchers can be used independently. We’re trading raw power for economics and trickiness.
Okay, let’s review. We have Stinger missiles as our man portable air defense system. We can also use the M1097 Avenger system to gain some network capability on the short range end. This system holds eight Stingers on a rotating turret on the back of a HMMWV, and has a network datalink for missile cueing. We have NASAMS II launchers that can be fitted on the back of medium trucks (or more HMMWVs), and those can cue off of networked radars or their own radar system, and we figure that each division would have a good number of these to use and allocate to brigades as they advance. Finally, we have the big Patriot missiles for area and corps-level defense. We can network in AWACS assets, and even our fighters.
But wait, there’s more. Since the Borgundian War Department is somewhat paranoid (it’s in their job description), and they reckon that the Sov–I mean, the Russians might decide that perhaps, just once, they might try this launching this new ‘surprise attack’ thing themselves rather than getting suckerpunched. So it would be really cool if we could have a big radar to provide some level of early warning. Fortunately, Raytheon is happy to deliver. The AN/FPS-132 BMEWS has a trio of AESA arrays that are a massive 25.6 meters in diameter. It provides all around coverage at extremely long ranges, albeit at rather low resolution. Still, it’s a nice addition to the network.
Any network this fancy needs a name. Something cooler than just Borgundy backwards (like Iraq’s system). Since a cornerstone is the Patriot, and most of the components are made by Raytheon (headquartered in Andover, Mass), and since I know he’s Fishbreath’s favorite football coach, we’ll call our system BELICHICK. Air defense control personnel will be issued the SB15 sweatshirt, hooded, grey.