Tag Archives: history

Parvusimperator Reviews the F-22 Raptor

No fighter discussion would be complete without mentioning this one, even if it’s technically not available for the procurement games.

To understand the F-22, we should first look at the ATF, or the state of military aviation in the ’80s. The core of the USAF was the F-15 and the F-16. These were great fighters, but the Soviets had counters, namely the Su-27 and the MiG-29, which were at least the equals of the American fighters. In the maneuverability area, they might even be considered a bit ahead.

American doctrine was heavily invested in air superiority, and the USAF was always looking for the next big thing, so they put out a design concept for the ATF. It was to fly faster and higher than other fighters. Or, more precisely, to cruise higher. Speed is good, since speed is energy that can be converted into maneuvers. Energy is life. But supersonic speed meant afterburners, which burned fuel rapidly. So most fighters couldn’t sustain supersonic speeds for very long. The USAF’s idea was to use new engine technology to push the envelope of cruise speed, not maximum speed. The resulting fighter would not be faster than the Eagle, but it would be able to maintain supersonic speeds without lighting its afterburners (to “supercruise”). These engines would be designed to work at higher altitudes, because altitude can be converted into energy. Energy is life. Energy is winning.

Of course, there were secret projects in the works too, and so the USAF added stealth requirements. Stealth demanded careful shaping, special skin, and internal carriage of weapons. This helped the supercruise, since it reduced drag. A protracted development period due to the end of the cold war, and a competition between the Lockheed and Northrop Grumman entries eventually resulted in the F-22 we know today.

The F-22 is the king of the skies. Full stop. There is no better aircraft at aerial combat. None. Fighting with a Raptor really, really sucks. The Raptor has a massive, powerful, highly advanced, low-probability of intercept radar, and the obvious stealth features. So it’s going to see you first. And because it cruises at mach 1.2-1.4 at a higher altitude than you, the Raptor has the energy to decline any engagement it pleases, or dictate the range as it pleases.

If the Raptor chooses to engage BVR, as we’ve mentioned it’s going to get the first shot. It sees you first. It gets to position favorably. Plus, if you’ll recall, it’s flying higher and faster than you. So its missiles get that much more energy, because they start from a supersonic platform, and get a gravity assist as they dive down. Which is a great recipe for an intensely frustrating exercise. And by ‘exercise’, I mean ‘simulation of being smote by an angry god’.

But that’s BVR. The Raptor owns BVR. What if we force the merge and go to WVR? Probably by stipulating in the exercise rules that it’s a WVR fight, but still. Well, here go some of the advantages, though it’s still a massive pain to acquire a lock on the Raptor. At least you can see it. And you can engage with IR seekers, but not super well. Everybody dies in WVR. The Raptor is no exception. But it has the best aerodynamics of any fighter around, with a very high thrust/weight ratio and very low wing loading. It also has thrust vectoring. So even in WVR engagements, the Raptor is a winner more often than everybody else. It’s kill to death ratio at Red Flag is hilariously lopsided, and that’s against pilots who dogfight for a living.

If you’re thinking this is quite gushy, and excessively positive, you’d be right. I love this thing. But it’s not tops at everything. The internal weapons bays are somewhat limiting. The Raptor was designed around a warload of six AMRAAMs and two Sidewinders internally. This isn’t a bad loadout, though it could be bigger. However, those bays are not very deep. So the F-22 can’t carry much in the way of bombs. And it can’t carry any bombs that are all that big. The F-35 can’t carry many bombs, but it can carry two of just about any air to ground weapon you please. The F-22 is limited to bombs of 1,000 lbs or less, and that size class also rules out most standoff weapons. Plus, it only recently got ground-oriented radar modes. Ground attack is not its thing. Though the USAF is trying, and has made special small GPS-guided glide bombs so the Raptor can bomb more stuff.

Oh, and it’s out of production. Even when it was in production, it was super expensive. You could theoretically restart the production line, but that would cost a whole bunch of money. And the USAF only bought 187, which isn’t a lot. And there are have been issues with the onboard oxygen generating system, which have restricted that flight envelope. Those should be fixed by now.

So it’s an expensive, gold-plated, air-superiority fighter with gimped ground attack in a world of strike operations. Would we buy it?

Well, we can’t. Production lines were closed in 2011. Sorry. Blame Rumsfeld, not me.

Feels like a cop-out, doesn’t it? Okay, fine. Suppose they got their act together and started making them again. Raptors rolling off the production lines. Would we buy them?

Well, we still can’t. Even if the production lines were reopened, there’s a pesky act of Congress in the way. Really. There’s a law in the United States that says Thou Shalt Not Export the F-22. Even to one of America’s favorite and closest allies, like Japan or Australia or Israel. No Raptors for you.

Sigh.

Okay, that’s another cop-out, right? I’m still avoiding the question. Fine, fine. Remove both pesky intrusions of reality. Would. We. Buy. One?

We’d need a price, right? Well, let’s be awful and take the figure from an offhand quote of an Israeli Air Force general of $200 million, rather than the much more favorable wiki flyaway cost of $150 million. So. 200 million dollars a copy. Would we buy?

Hell fucking yeah, we’d buy.

Did you really think I’d say no to the greatest aerial combatant of all time? Are you mad?
We’d be all over this, if the above conditions were met. Even at $200 million. It’s got Wunderwaffe-class awesomeness. It’s also an absolutely beautiful fighter. It looks right. It is right.

Since this is a game, you might be thinking I should try to trade Fishbreath something so we can both skirt our self-imposed rules a little. He’d never go for it though. He doesn’t like spendy wunderwaffe.

Author’s Notes: This review was not sponsored or paid for in any way by Lockheed Martin, the Fighter Mafia, or members of the United States Air Force.

Resurrected Weapons: Douglas F6D Missileer

We looked at the long-range, high performance Eagle missile on Tuesday. Now, let’s look at the plane to carry it.

As ever, the US Navy was concerned about saturation attacks on its carrier battle groups. To counter the new threat of bombers armed with large, long-range antiship missiles, the Navy had two projects under development in the late fifties. One was the Typhon long range SAM, with a projected range of 200 nautical miles. The other was the Eagle/Missileer project.

Missileer was, unusually for the jet age, a subsonic fighter. Given that it had to stay on station more than 200 nautical miles away from the fleet, and that more loiter time was significantly better, the decision was made to keep the design subsonic. Long loiter also conveniently sidestepped delays in interception from launching alert fighters, since the fighters could be orbiting and ready. Subsonic design made mounting a large, advanced radar and large, advanced missiles easy. We’ve already talked about the massive, 1,284 pound Eagle missiles. The Missileer was designed to carry six of them. It was also designed around the large APQ-81 radar.

APQ-81 was an early pulse doppler radar. In an era when a fighter radar with a 24 inch diameter dish was considered large, APQ-81 had a dish 60 inches across. It could detect a standard radar target1 at 120 nautical miles, and track sixteen of them simultaneously at 80 nautical miles. It had a track-while-scan mode. It was designed with innovative anti-jam features from the beginning, including a narrow, 3° beam with a 24 kHz bandwidth, both chosen to avoid most available jamming systems.

Unsurprisingly given that it had to carry such a large load, the F6D was fat and ugly. It was 53 feet long and had a wingspan of 70 feet. It was powered by a pair of Pratt & Whitney TF-30s, engines that would go on to power the F-111 and the F-14A.

Like the AAM-N-10, he Missileer was cancelled by McNamarra to free up budget space for other things. The aircraft itself would be easy to develop but the radar and systems integration (and the AAM-N-10) would be risky and expensive. Plus, they’re overspecialized for a single mission. The F6D had to be bought in conjunction with another, more conventional fighter, since it could not provide strike escort capability or establish air superiority. It was a project that was somewhat ahead of its time, like Typhon. The US Navy would later get a much more reasonable set of systems with similar capabilities in the 1980s with Aegis and Tomcat/Phoenix.

Verdict: Funding request denied by the Borgundy Aircraft Procurement Board


  1. In the late 1950s, the standard radar target was assumed to have a radar cross section of 5 square meters. This corresponds to the radar cross section of a B-47 bomber. 

Resurrected Weapons: AAM-N-10 Eagle

Let’s continue our look at some vintage projects. The AAM-N-10 Eagle was a US Navy air to air missile program optimized for enemy bomber interception in the fleet air defense role from the last years of the Eisenhower administration.

The problem, evident even by the late 1950s, was that Soviet bombers could mount antiship missiles. So the bombers had to be engaged at long range, because intercepting large numbers of small, high-speed missiles is very difficult. To do so, and to get the fleet defense fighters outside the range of new surface to air missiles under development, the Navy proposed a subsonic, long endurance “fighter” and a high performance missile. This missile was the Eagle.1

The Eagle was developed by Bendix, in conjunction with Westinghouse’s big new APQ-81 radar and the Douglas F6D Missileer fighter. It was a two-stage missile, with a booster stage and a sustainer stage that would fire after a glide period. Both stages were solid-fuel rockets. The booster gave a speed of mach 3.5, and the sustainer could get the missile to peak at mach 4.5. Midcourse guidance updates were to be provided by the APQ-81, and terminal guidance would be an active radar seeker with a home-on-jam mode, much like a modern AMRAAM. AAM-N-10 flew a lofted trajectory, and had a 160 nautical mile (300 km) range.

That’s pretty impressive, but to get that performance in 1959, you needed a big, expensive missile. AAM-N-10 was 16 feet long ready to launch. The booster was 16 inches in diameter, and the second stage was 14 inches in diameter. The booster’s wings folded, and the second stage had a finspan of 34 inches. Weight was 1,284 pounds, with a 110 pound warhead.

The AAM-N-10 and the F6D were cancelled by Robert McNamarra in 1960, to free up money for other urgent programs2 and to establish the authority of him and the new Defense Department over the various services.

So what do I think of all of this?

Well, it’s hard for my opinion to not be colored by my opinion of Robert S. McNamarra, and I hate Robert McNamarra. His decision making process is suspect. And his “commonality” fetish got abused into some mind bogglingly dumb ideas.3 But he did get some good programs to completion/procurement, like the Polaris SLBMs and the M-16 (my favorite rifle). And here, I’m inclined to agree with McNamarra again. The Eagle was very specialized, and very expensive. It was useable from only one platform (Missileer), and for only one mission (engaging non-maneuvering bomber targets at extreme range). Missileer could not do any other mission either. Conceivably the AAM-N-10 could have been launched from the A-6 Intruder, but that would have required a different radar, or depending on an E-2 for all guidance updates. However, the core concept was a good one and we’ll see this become much more refined and sensible in the AIM-54 Phoenix.

Verdict: Funding request denied by the Borgundy Air Ordnance Procurement Board


  1. AAM-N-10 is the old designation system for air to air missiles developed by the Navy. 
  2. viz. the Polaris SLBM program and rebuilding the tiny and useless US Army 
  3. cf. the F-111B. 

Resurrected Weapons: A-6E Intruder

If my father’s generation wanted precision strike from the sea, they’d call up the ugly but effective Grumman A-6E Intruder. Looking like a drumstick with wings, the Intruder had a two-man crew, a radar-navigation system for night/all-weather guidance, and a FLIR system in a small turret under the nose for target identification. It was subsonic, had an approximately 600 nautical mile (a bit over 1,100 km) striking radius, and it could carry up to 18,000 lbs of bombs.

The long strike radius was a direct consequence of optimizations and the choice of subsonic speed. Grumman opted for subsonic speed, because even the big F-4 Phantom was subsonic when heavily laden with bombs. Accepting a lack of supersonic speed meant that more fuel efficient engines could be used, providing a long strike radius.

In the Intruder’s day, there were no smart weapons. The delivery vehicle was responsible for all of the precision (or lack thereof). This alternative is a lot easier, since the plane is a lot bigger and easier to fit sensors and targeting computers into. As a brief aside, this sort of precision-on-aircraft delivery of dumb munitions is still used by Russia, and was the delivery method of choice for the airstrikes in Syria.

The Intruder proved very effective in Vietnam, where it was the Navy’s most accurate bomber. It was also the primary Navy delivery platform for dropping laser guided bombs in Desert Storm, since the -E models had a laser designator in their FLIR turret.

Despite the Intruder fleet getting new wings in the early 90s and having a solid combat record, the Intruders were taken out of service in 1996. There really wasn’t a perfect replacement. It was supposed to be replaced by the A-12 Intruder II, a poster child for bad project management. This project was cancelled1 without anything new being proposed in its stead. In the late 90s, the Intruder’s role was supposed to be filled by F-14 Tomcats with LANTIRN pods, which could not match the payload capacity of the Intruder. In 2005, the Tomcats were also removed from naval service, and their roles were taken over by F/A-18E/F Super Hornets. These could not match the range of the Tomcat or Intruder (both of which have a strike radius of about 600 nautical miles).

I really don’t like the loss of strike radius in the newer platforms. Super Hornets are nice otherwise, but they could really use longer legs. Yes, I know tankers have worked in recent conflicts, but the Navy shouldn’t rely on them. Or else what’s the point of naval aviation? If you can make tankers work, you can probably make land-based strike work. The whole point of naval strike is to be deployable quickly, and to come from additional vectors. In Vietnam, carriers at Yankee Station brought strikes from the east, in addition to the USAF strikes from the west out of bases in Thailand. If they required tankers, that makes life a lot more difficult for the planners, since tankers are fat and vulnerable.

The Intruder was cancelled to reduce the number of airframe types in the fleet. Understandable, but likely premature. The limited wars of the 2000s and 2010s would have been a good match for the capabilities of the Intruder. The A-6E isn’t very survivable in a high-threat environment, but Al Qaeda doesn’t have any serious SAMs. Long range would also make for long loiter time, and adapting a plane for JDAMs isn’t exactly hard.

On the one hand, restarting A-6 production would be silly. On the other, they were taken out of service way too early, and there’s no real replacement out there.


  1. The A-12 is a program that even I think deserved to get cancelled. 

Book (Series) Review: The U.S. Army in World War II — European Theater of Operations

I have a number of these volumes. They are published by the Whitman Publishing Company, though the originals were published by the US Army’s Military History Department. They are a staff-officer level view of the war. They provide an excellent battalion-and-above level perspective. Discussion of command decisions, command reasoning, politics, and large scale maneuvers is handled well. The author, Martin Blumenson, is also good at covering logistical matters, which is a very important side of war that few bother with.

As fitting a staff level account, the maps in the text are first rate. They are very clear and carefully reproduced. These are not crude, cheaply printed duplicates. However, the maps within chapters are somewhat sparse. We might expect more within the text, but the back of the book has something better: color gatefold maps.

That’s not a delusion or an ungodly typo. I’ll write it again.

COLOR. GATEFOLD. MAPS.

I’ve never seen any other book do this. Each volume in the set has approximately twenty (20! That’s Two-Zero!) full-color, fold-out maps at the back for your analytical pleasure. Now you feel like you’re sitting in a warmer, nicer version of SHAEF. You can see terrain features and force depositions like never before. It’s spectacular. And yes, the text has inline references to the maps, which are numbered for your convenience. This is the best way to get a great mental image of the campaigns of the European Theater of Operations.

All that said, these are very much in the old-school of history writing. Unless someone gets a mention in dispatches, individual soldiers on the front line do not get called out. And we do not get the perspective of individual soldiers at the front lines. That is not the objective of these works. As I mentioned before, they’re oriented to the staff level, and they do not deviate from that.

The series comes highly recommended, whether they are list price or on sale.

On Squad Automatic Weapons

When equipping that base unit of infantry, the squad, with automatic weapons for support fires, there are two schools of thought. These are the magazine-fed ‘automatic rifle’ vs. the belt-fed ‘light machine gun’. In World War 2 terms, this might be seen as the BAR/Bren vs the MG-42. We can see the same question being asked today, with the US Marine Corps using the M27 IAR, and the US Army using the M249. Let’s look at these options.

First, the M249. Made by FN, this is a belt-fed weapon. Unlike the M240, the M249 is chambered for the same 5.56×45 mm round as the squad’s M4s. It is also generally considered to be operable by one man. No assistant gunner required. It has a quick-change barrel to facilitate sustained fire and help deal with heat buildup. It can be operated from 100 or 200 round belts. It weighs 17 lbs empty and 24 lbs loaded with a 200 round belt in a plastic box (sans optics). It has an integral bipod, and is most effective when fired from the prone position with the bipod for stability and support.

Second, the M27. Made by HK, this is a magazine-fed weapon. It is also intended to be operated by one man. While it has a relatively heavy barrel profile, it lacks a quick change barrel. It can only be loaded with standard detachable box magazines. While there are some higher capacity magazines on the market1, the US Marines currently only issue the standard 30 round box magazines. These are the same as what the rest of the squad uses for their M4s, so there’s some commonality there. Weight is 7.9 lbs empty, and a bit less than 9 lbs loaded with a 30 round box magazine (again, sans optics or other accessories).

Note that both weapons fire the same 5.56 mm round. So effective range and lethality are roughly equivalent. Specifics will depend on the skill of the shooter and the round being fired. I will not discuss this further.

It is also true that the M249 has a greater capacity for sustained fire than the M27. Even the M27’s proponents agree there.

A more useful question is “Is the greater suppressive capability of the M249 outweighed by what you give up?” The M27 is less than half the weight of the M249 (even after we add appropriate optics and other accessories to each weapon). The M27 is a more accurate weapon than the M249. The M27 can be used in a stack for room clearing, whereas the M249 cannot due to safety concerns stemming from its open bolt mechanism and the bulk of the weapon. Weight and bulk also means that the M249 gunner is harder pressed to keep up with the other members of his squad.

Let’s also briefly talk ammo weight. The basic load of a SAW gunner is 1,000 rounds, or five 200 round boxes, which comes out to about 35 lbs. It takes thirty four 30 round magazines to get about the same number of rounds,2 and that weighs about 34 pounds. Note that by-the-book loads for the M27 IAR gunners in a USMC squad vary from 16 to 21 magazines (480-630 rounds). Variance due to the weapon being new, and TTPs being worked out. That’s 16-21 lbs of ammo. This neatly side steps the question of weight of the spare barrel assembly for the M249, but I can’t find its weight. Assume several more pounds of weight for the barrel assembly, if it is carried. If it is not carried, then the quick-change barrel feature is not useable, and sustainable rates of fire will be lower. However, they will still be significantly higher than those of the M27.

There’s also a temptation we should avoid when considering infantry tactics. While it is easiest to ponder loadouts one organizational level at a time and build from the smaller levels to the bigger ones, we should remember that the smaller ones don’t fight alone. A squad is not going to be running around the battlefield on its own. Ad hoc room-clearing units can be assembled from the manpower from a few squads in a platoon without difficulty. If flexibility is desired, additional carbines can be stowed aboard the squad’s organic transport.3 We have lots of assault rifles already, which look an awful lot like the automatic rifles in question.

The most important matter, whether the greater sustained fire rate of the M249 means it is a more effective suppression weapon than the M27, is not something I have the means to test. I would question most tests of suppression on the grounds of failing to adequately simulate combat. Setting aside the intangibles, not having a belt-fed weapon in the squad does not have a good historical record for staying power. Let’s review it:

  • In World War 2, the US Army and US Marine Corps both had BARs as their squad-level automatic weapon. They considered a new Automatic Rifle version of the M14, but declined, and switched to the belt-fed M60 (and later the M249).
  • In World War 2, the British Army had the Bren gun, which is also more or less an automatic rifle, being fed from a magazine. The replacement for the Bren Gun was the L7, which is a licensed version of the FN MAG.4
  • In the 1980s, the British attempted to put a new 5.56 mm automatic rifle, the L86, into service to compliment their new 5.56 mm assault rifle. Caliber commonality. They were dissatisfied with the loss of firepower in the squad, and switched to using the FN Minimi as the squad automatic weapon.
  • The Germans had plenty of experience fighting American troops equipped with BARs in World War 2. The German soldiers were armed with the MG42. The American soldiers wanted MG42s instead of their BARs. The German soldiers agreed with them. They did not think the grass was greener on the other side of the fence, and stuck with the MG42 (rechambered for 7.62×51 mm NATO as the MG3).
  • The Russians built a belt-fed 7.62×39 mm machine gun, the RPD, to compliment the AK-47. It lacked a quick-change barrel, and proved to be unsatisfactory. They replaced it with the RPK, an automatic rifle version of the AK-47. They stuck with it through the caliber change to 5.45×39 mm. The Russians are very doctrinally disciplined. Once the Russians hit actual combat in Afghanistan, again the automatic rifle proved unsatisfactory and soldiers exchanged their RPK-74s for belt-fed PKMs (chambered in 7.62x54R mm). This happened again in combat in Chechnya. The belt-fed weapon was favored over the magazine-fed weapon for support purposes, even though it was heavier and bulkier. Russia is moving (albeit slowly, for want of money) towards equipping mechanized forces with PKP machine guns as squad support weapons. In the meantime, the PKM sees lots of service in that role.

There is a clear trend towards real combat driving the use and purchase of belt-fed weapons at the squad level. The US Marine Corps is bucking the historical trend, which gives me pause. The US Marine Corps tends to favor large, 13-man squads, and doesn’t fight mechanized. This might influence their decision somehow. The US Army, which uses 9 man squads (more similar to other powers at present), and does fight mechanized, has not followed the Corps in switching out M249s for M27s. Given the firepower and limited dismount capacity of the M2 Bradley, this switch would seem attractive for them. Perhaps they don’t agree with the conclusion of the USMC tests which said the M27 was better at suppression.

Without knowing the details, I could not possibly comment on the tests. Offhand, we’d want to make sure we weren’t favoring the M27s in test parameters, or putting new M27s against old, well-used, and worn-out M249s.

Here the Corps and I part ways. I much prefer a belt-fed machine gun or two at the squad level. Given the choice between the M27 and the M249 to support a squad, I’ll take the M249 every time. Belts all the way. Sometimes heavy is best.

1.) Magpul makes a 40 round box and a 60 round drum magazine, and Surefire makes a 60 round and a 100 round quad-stack box magazine. There are a bunch of others, but these come to mind first for being quality. That said, when the M27 was adopted, the USMC did not find any existing 100 round magazines to be reliable. I am unsure of their test protocol or which magazines were tested (or if 40/50/60 round magazines were considered).
2.) This works out to 1,020 rounds, but mais n’enculons pas des mouches.
3.) Admittedly I’m a big fan of mechanized infantry, but is there any army worth talking about that doesn’t provide some form of motorized transport for its infantry units?
4.) The American M240 is also a licensed FN MAG.

Remember the 7th

Seventy five years ago today, the United States Naval Base at Pearl Harbor was attacked by the Empire of Japan.

I could say a lot more on the matter, but I am merely an amateur analyst. Instead, listen to the stories of some men who were there, courtesy of C-SPAN.

Stories, Part 1

Stories, Part 2

Perhaps they are the lucky ones to have survived. Perhaps not–they lost a lot of friends that day.

Let’s spare a thought and a prayer for the men who gave their lives that day. And for those who had to wait so long to see their brothers in arms again.

CAS Aircraft Throwdown: A-10C vs. Su-25T

Fishbreath and I have spent lots of time studying these aircraft and flying them in DCS. They represent two different philosophies for air support, the clash between ‘push’ from the top and ‘pull’ from the bottom. Plus, they represent some different design philosophies. We’ve talked about these two planes already, but let’s break everything down and see how they compare directly. Features are in no particular order.

WEAPONS:
We’ll break these down by type, and then tally up an overall score for this section.

GUN: A-10C
This is no contest. The A-10C has the GAU-8A, which is the most powerful flying gun around. It’s got better AP rounds than the GSh-30-2, and more than five times as many rounds in the magazine (1,174 rounds as opposed to 250). The A-10C has some nifty pilot aids to stabilize the aircraft on a gun run too, but the Su-25T just leaves you to your own lack of skill. Interestingly, the Su-25T also doesn’t have enough dispersion built into it’s gun. The A-10’s designers recognized that being exactly on target is very hard, so the gun has some built in dispersion to give you a margin of error, which makes it a lot easier to hit things.

ROCKETS: Su-25T
This is also no contest. The Russians like their rockets, and have a wider variety of sizes available. Even if we restrict to the standard small rockets (Russian 80mm S-8 and American 70mm Hydra 70), the Russians have a wider variety of warheads available, including exotics like thermobarics.

UNITARY BOMBS: A-10C
Both have the ability to drop laser guided bombs, plus plenty of dumb bombs. The A-10C can drop JDAMs (GPS guidance). The Su-25T can’t drop Russian GLONASS-guided bombs, but they do have the ability to drop bombs with the Electro-optical guidance system (they have a -Kr suffix). That said, the A-10C has glide bomb options, and the Su-25T doesn’t, giving the ‘Hog some excellent cheap standoff attack options. Glide bombs rock.

CLUSTER BOMBS: A-10C
Both have a lot of cluster bomb options, but (for now, at least), the Americans do cluster bombs better. The CBU-87 doesn’t really care at what altitude/airspeed it’s dropped at, and drops bomblets that combine antipersonnel, anti-armor, and incendiary effects in each bomblet. That’s pretty cool, and is a big logistics simplifier. It’s compatible with the wind-corrected munitions dispenser add-on kit, which isn’t really guidance, but it does ensure that the bomb dumps the submunitions where you intended, rather than get all mucked up by the wind. The CBU-97 Sensor fused weapon is also pretty sweet. It’s designed to scatter smart anti-tank munitions that will search for a tank beneath them as they fall, and then fire an explosively-formed penetrator at it if a tank is detected. The Russians don’t have such fancy anti-armor measures, and they don’t have fancy wind correction kits. They also don’t combine effects frequently in their bomblets. And altitude matters for the dispensers.

MISSILES: Su-25T
Given how much tech the Americans like to fight with, this might be a shock. Both aircraft can carry older WVR AAMs on the outermost pylons that can’t do much else. The A-10C can also carry a bunch of Mavericks, and that’s about it. The Maverick is a great air to ground missile, with a variety of guidance options. The Su-25T can carry the Kh-25 “Maverickski”, and the Kh-29, which is something like a bigger Maverick with a bigger warhead. It can also carry 16 9K121 Vikhrs ATGMs, so it ends up with more anti-tank capable missile capacity. You can also add an ELINT Pod and antiradiation missiles for SEAD missions. The A-10C has no such capability. The A-10C would certainly benefit from being able to sling Hellfires.

WEAPONS SCORE:
A-10C: 3
Su-25T: 2

MOBILITY: TIE
I’m not actually going to break this one down. Either way you look at it, it’s a tie. The Su-25T is faster. The A-10C has more range. The Su-25T was designed to be sent out from a forward airbase towards a given concentration of enemies. So it’s superior speed is more useful in that doctrinal role. It’s designed to go out, kill some stuff, and go home. Loitering is not called for, so plenty of range isn’t needed. The A-10C was intended to loiter near the battlefield until called for or it’s out of ammo. So range is good, because range translates into loiter time. Since it’s supposed to start in the air close to where the action is, it’s inferior speed isn’t a great handicap. Each does one thing better, and each has an attack doctrine built around its strengths.

DURABILITY: TIE
Both have a whole bunch of design features to make them tougher. Absent some kind of common destructive testing, this one is too close to call.

OTHER:
The category for random things that I can’t think of another place for.

LOCATING TARGETS: A-10C
This one’s almost not fair. The A-10C has a bubble canopy to provide good, all-around visibility. Plus, the A-10C has the LITENING pod, and this makes the Shkval look like a cardboard tube duct-taped to the cockpit. The LITENING has way more zoom, more resolution, a nearly-all-around field of view, and remembers what you were looking at if you have to make some turns, or if some part of the plane gets in the way during a turn.

SCORE TALLY:
A-10C: 6
Su-25T: 4

So the A-10C is better.

Or at least, in this simplified metric evaluation, the A-10C is the better plane. Really, the more relevant question is “Which doctrine do you prefer/buy into?” and to a lesser extent “Whose weapons are you buying?” since those questions will determine which will work for you, and if you’ll have to pay a bunch of annoying weapons integration costs and do some testing. Better electronics would go a long way toward improving the Su-25T, especially in the target acquisition phase.

Resurrected Weapons: YAGM-169

You may have noticed some logistical inefficiencies in current missile procurement. I’ll use Western examples, but there are similar Russian ones. We have several missiles that are about the same size and have about the same role: engagement of a visually (possibly with the help of infrared) acquired target. These missiles include the BGM-71 TOW, which might be launched from helicopters or ground vehicles; the AGM-114 Hellfire, which might be launched from helicopters or UAVs; and the AGM-65 Maverick, which might be launched from fixed wing aircraft or fixed wing aircraft. The Maverick’s warhead is quite a bit bigger, which contributes to its larger size. Otherwise, they’re all used for about the same sort of fire mission. Could we replace all three with a single missile?

Enter the YAGM-169. Quit snickering in the back. This missile weighs 49 kg and is 177.5 cm long. This matches the weight, but is a bit longer than the Hellfire missile, which is 163 cm long. This is, however, smaller and lighter than the Maverick. The big difference between the Hellfire and the Maverick, aside from platform-induced range variations, is the larger warhead. Here is where some compromises come in. The standard target for the Maverick and the Hellfire is an armored vehicle. The toughest armored vehicle is the MBT. If a Hellfire can kill any tank you please, why have the heavier warhead? The Hellfire can get this done with a large and powerful tandem shaped-charge warhead, delivered from above. Adding a fragmentation jacket provides some measure of multipurpose capability. We have our warhead, and hence, our Hellfire-like size.

What about heavier targets? Since the development of the Maverick, we’ve developed a number of precision-guidance kits for conventional bombs. Combine with a glide bomb kit and some altitude, gives us equivalent range. Alternatively, for well-defended targets, we can get significantly better standoff range from a longer range cruise missile like the AGM-158. Plus, we can carry more of the lighter YAGM-169s.

Okay. So we’ve perhaps accepted the smaller warhead size. What about range? Well, we have more advanced rocket motors, plus it’s hard to compare the range of the Hellfire and the Maverick, since the aircraft that launch the Maverick do so from a higher altitude and higher airspeed than that of the helicopter launching the Hellfire. Still, we can improve the range with a variable-thrust solid-fuel rocket motor.

What about guidance? Well, the TOW uses an old school SACLOS wire guidance system. Which is outmoded, and will be difficult to integrate onto a fast-moving aircraft. So forget it. Beyond that, the Hellfire has a couple different guidance options: a semi-active laser homing seeker and an active millimeter-wave radar seeker. The Maverick is currently available with a semi-active laser homing seeker, an imaging infrared seeker, or an optical CCD seeker. You might expect different versions of YAGM-169 with different seekers, but you’d be wrong.

YAGM-169 was designed with a triple-mode seeker that combined imaging infrared. semi-active laser homing, and active millimeter-wave radar homing in one unit. This is the one part of the missile that I’m concerned about, at least as far as cost. Still, it’s easy enough to build versions with separate seekers if cost becomes an issue.

That said, the YAGM-169 was (shockingly) on time and on budget. But the US cancelled it during Operation Iraqi Freedom because of budget pressures.

So what do we think? YAGM-169 was on budget, and tested from both fixed- and rotary-wing platforms. Awesome. Large production runs should help keep costs down. I’m wondering if it can also replace the TOW as a missile on e.g. Bradley, but we could press Spike LR or Javelin into this role, and those would be much easier for troops to reload in the field, being lighter.

Veridct: Approved for immediate production by the Borgundy Ordnance Procurement Board

Lessons from Wargame: Airland Battle

Fishbreath and I are big fans of Wargame: Airland battle (which I will abbreviate as WALB, for I am a lazy typist). Now, I won’t pretend that it’s a perfect simulation, but it’s a solid one which should be relatively consistent in it’s assumptions/errors. So I thought it would be a good place to test some ideas, at least until I finally buy Steel Beasts (which also doesn’t do airpower). I have rather less time in Red Dragon, but I’ll add notes where appropriate.

I tend to roll with tank-heavy decks, with a good amount of airpower. So I’m usually rolling with America for NATO (because USAF) or USSR for Pact (because duh). Some observations and conclusions, in no particular order:

Observation:
If we’re talking tanks alone, the T-80U is tops, followed by the Leopard 2A4 and then the M1A1. The T-80U has a marginally better gun, and gun-launched ATGMs, which gives it a bunch more range. Flank armor is weak, so hit it there. The Leopard 2A4 and M1A1 are pretty similar, and both are noticeably less good than the T-80U. Though numbers even things up.

Conclusion:
Gun launched ATGMs are cool, because they give you more range. Puts the priority on seeing the other guy first of course. Though, that’s really important all the time, as we’ll see. Note that tank optics are a little nerfed in the game, to make you use recon units. Which is fine, but does deprive the Abrams of things that the US Army got right before everyone else, namely high end thermals. Otherwise, this one’s all about the gun. As for the numbers game, Uncle Joe said it best.

Observation:
Of course, this isn’t a straight-up tank sim (like Steel Beasts). So when playing NATO, I’ll go with America. The M1A1 is almost as good as the Leopard 2A4, with the biggest deficiency being that you have to gas it up more frequently. This happens to me a lot. But playing America gets you a much, much better air force, better attack helicopters, and Bradleys.

Conclusion:
It’s all about the combined arms, shock. No big surprise here. Games like this tend to strongly encourage playing as the bigger powers who give you more options. This was one of the few things improved in Wargame: Red Dragon–they allowed you to group lesser powers to get a well-rounded unit set.

Observation:
I love Bradleys. One of my favorite combos is the M3(A1) recon vehicles with some M1(A1) Abramses. This gives me a long range sight with the good recon optics, plus a long range missile punch from the Bradley TOW-2 missiles. It does take a little micro to keep the Bradleys alive. I probably don’t have to remind you to put the big tanks with the heavy armor out in front.

Conclusion:
ATGMs are useful on IFVs, who knew? It’s more that this armament set of smallish autocannon with lots of ammo + ATGMs on IFVs is useful for just about any target I encounter. I try to bypass towns, personally. Other loadout decisions might also work for your intended use case. I will say that the Bradleys are also quite formidable on the defensive, again, as long as you can keep them from being hit too much. The 25 mm gun with large ammo reserves and good fire control is pretty good against aircraft. Not much to be done about IFV survivability except go heavier. That seems familiar…

Observation:
In that same vein, I’m big on American-style aggressive reconnaissance. Recon vehicles alone seem to have a nasty habit of dying. As part of an armored spearhead, they live longer.

Conclusion:
There are two schools of thought on recon: recon by stealth and recon by force. I like the latter. It fits with my tactical conceptions. I don’t think there’s a wrong way to do recon, but understand your role and the vehicles. Bradley’s ain’t stealthy. Something like the SPz 11-2 Kurz doesn’t bring a ton of firepower to a fight. And the American school fits me better, so I like it more. Glad to see it can actually work too.

Observation:
The Soviets have some great SHORAD in Tunguska. That thing is amazing. Interestingly, my favorite from the NATO perspective it the cheap and cheerful M1097 Avenger, which was a surprise to me. It is not as obviously amazing, and I probably wouldn’t have picked it if I didn’t desperately need to make do while I wait for Eagles to swat things out of the air.

Conclusion:
You knew the Tunguska was great. Guns, missiles, mobile like a tank. Love it. It is sometimes advisable to order it to shut down its autocannons so that it doesn’t announce its presence to enemy armor. The success of the M1097 was a surprise to me. It’s a HMMWV with a big rack of stingers on the back in a turret. But Stingers are excellent MANPADS, and it’s a great thing to hide and use to ambush marauding aircraft and helicopters. And then move to a new hiding spot before the inevitable counterstrike. It’s the kind of SHORAD you could really load up on. Maybe load some WVRAAMs to for a bit more range.

Observation:
My Soviet decks, and especially my American decks tend to lack a lot of infantry. Especially the well armed ‘shock infantry’ that a lot of the other European powers have. A bunch of this is because I prefer armored thrusts and ripostes to slugging it out. This basically means I’m gonna have a hard time dealing with built-up areas. That’s the price I pay for my builds. Also, Fishbreath likes the infantry-defensive type fight (maybe he’s got a British character to his tactics?), and so I usually leave that to him. Instead, I’ll take the deep Thunder Run any day of the week.

Conclusion:
Specialization is good. Urban combat sucks. Bring infantry if you’re stuck there. Or avoid it entirely. You can get a lot of success with deep thrusts. Especially if you’ve used some probing moves and skirmisher-type engagements to figure out where the enemy isn’t. Protip: that’s where you should be striking.

Observation:
I’ve got some good rounds with a German armored deck that comes with their excellent Panzergrenadier shock infantry. If you’re gonna storm a town, go heavy. In Red Dragon, Panzergrenadiers ’90 are awesome.

Conclusion:
If I’m gonna go infantry, I’m going with infantry that bring stuff. All the stuff. The bigger rocket launchers the better. Oh, and that buzzsaw that is the MG3. Cue the Panzerlied. Maybe I should build a Castle Iter Rules deck. It’s also in Red Dragon that you can get Marder 2s, a formidable IFV with staying power. You still don’t quite have the Death From Above air support that is the USAF though.

Observation:
Okay, let’s get to it. The USAF is the best AF, hands down. Want air superiority? They’ll get it. Want something to die? You got it.

Conclusion:
Airpower rocks, news at 11. Von Rundstedt’s ghost is yelling “Duh!” over my shoulder as I type this, I’m sure. If you can see it, you can bomb it. And if you can bomb it, it’s gonna die. The USAF even has plenty of SEAD to take out those pesky Soviet SAMs. Or you can use the F-117A. I’m pretty sure it was never intended to be used like some kind of stealth stuka, but I don’t care. It’s my go to if I want to get rid of some pesky command vehicle. Also, can I say napalm and cluster weapons rock? Because they totally do. I love you, Dow Chemical.

Observation:
The Soviets have the best overall air defenses around with the aforementioned Tunguska and the excellent medium-range Buk. They really need it given the mighty USAF, plus several other NATO members that have decent air forces that are good at bringing pain. Beware Tornadoes.

Conclusion:
Nothing new here. The Russians invested heavily in SAMs, and it shows. Also, cluster bombs are super effective. Shocker. Defense in depth is helpful. Tornadoes and similar are especially problematic because they come in low and fast, giving minimal time to react. The big vulnerabilities are against fighters, and against widely-deployed AAA, but I’ve usually spent my points on other things by then.

Observation:
The F-14 Tomcat/Phoenix combo is stupid awesome. It’s my go-to American fighter, despite the availability of the F-15C.

Conclusion:
This is an interesting function of some in-game limitations. Given the smallish size of the battlefield and lack of early warning from ground based radar or AWACS (and thus no early interception opportunities), my options are to have fighters loiter over the battlefield on patrol, or scramble to intercept. I’ve found loitering to lead to a bunch of annoying ambushes from enemy fighters or medium range SAMs, and it almost always means I don’t have air cover when I need it because of fuel concerns. If I’m intercepting, then the long range of the Phoenix missile makes up for all other shortcomings of it and the Tomcat. The Tomcat was built as an interceptor and it’s quite good at this. Being able to launch first even gives it a good shot against Flankers. So even though the F-15 is the better air superiority fighter, the F-14 is better in Wargame. Although its much less famous, similar conclusions apply to the MiG-31 Foxhound for the USSR (which is much more of a pure interceptor design than the Tomcat).