Resurrected Weapons: Douglas F6D Missileer

We looked at the long-range, high performance Eagle missile on Tuesday. Now, let’s look at the plane to carry it.

As ever, the US Navy was concerned about saturation attacks on its carrier battle groups. To counter the new threat of bombers armed with large, long-range antiship missiles, the Navy had two projects under development in the late fifties. One was the Typhon long range SAM, with a projected range of 200 nautical miles. The other was the Eagle/Missileer project.

Missileer was, unusually for the jet age, a subsonic fighter. Given that it had to stay on station more than 200 nautical miles away from the fleet, and that more loiter time was significantly better, the decision was made to keep the design subsonic. Long loiter also conveniently sidestepped delays in interception from launching alert fighters, since the fighters could be orbiting and ready. Subsonic design made mounting a large, advanced radar and large, advanced missiles easy. We’ve already talked about the massive, 1,284 pound Eagle missiles. The Missileer was designed to carry six of them. It was also designed around the large APQ-81 radar.

APQ-81 was an early pulse doppler radar. In an era when a fighter radar with a 24 inch diameter dish was considered large, APQ-81 had a dish 60 inches across. It could detect a standard radar target1 at 120 nautical miles, and track sixteen of them simultaneously at 80 nautical miles. It had a track-while-scan mode. It was designed with innovative anti-jam features from the beginning, including a narrow, 3° beam with a 24 kHz bandwidth, both chosen to avoid most available jamming systems.

Unsurprisingly given that it had to carry such a large load, the F6D was fat and ugly. It was 53 feet long and had a wingspan of 70 feet. It was powered by a pair of Pratt & Whitney TF-30s, engines that would go on to power the F-111 and the F-14A.

Like the AAM-N-10, he Missileer was cancelled by McNamarra to free up budget space for other things. The aircraft itself would be easy to develop but the radar and systems integration (and the AAM-N-10) would be risky and expensive. Plus, they’re overspecialized for a single mission. The F6D had to be bought in conjunction with another, more conventional fighter, since it could not provide strike escort capability or establish air superiority. It was a project that was somewhat ahead of its time, like Typhon. The US Navy would later get a much more reasonable set of systems with similar capabilities in the 1980s with Aegis and Tomcat/Phoenix.

Verdict: Funding request denied by the Borgundy Aircraft Procurement Board


  1. In the late 1950s, the standard radar target was assumed to have a radar cross section of 5 square meters. This corresponds to the radar cross section of a B-47 bomber. 

Leave a Reply

Your email address will not be published. Required fields are marked *