Armata Response 1: Myrmidon MBT

Usually, the Russians tend to make things that are rugged, ugly, and simple. See, the AK-47, the Mosin-Nagant, and the T-34. They work. But they are hardly innovative. Every so often though, they surprise everyone and come up with something new. In the 60s, it was the T-64, which introduced a production tank with composite armor and an autoloader. Last year, they did it again with the T-14 Armata, the first production1 tank where the crew are all in the hull and the turret is unmanned.

Why would they do this? Well, we’ve got some fancy electrics now, and if we physically isolate the crew from the ammo, then we maximize safety and survivability in the event of a catastrophic penetration of the ammo compartment. It also means that we can minimize the protected volume for the turret, so we can reduce overall tank weight. Much as I hate to admit it, tank experts in West Germany, the United States, and the Soviet Union all agreed that this was the way forward, even if it meant sacrificing visibility from the top of the turret with the Mark I Eyeball. Guess it’s time to suck it up and embrace the future.

So, the Russians have unveiled their fancy new Armata armored vehicle family, and it seems to be a pretty good one. We could upgrade existing hardware to match, or discuss the use of attack helicopters as tank destroyers. But the Tank Destroyer Doctine was a failure in World War II, and Fishbreath would never let me hear the end of writing up attack helicopters so darn much. Plus, it’s much more fun to write up a symmetrical counter, a new MBT of our own: the Myrmidon.

The Russians are trying to make the Armata a family of heavy combat vehicles. However, I don’t think this is a good idea. While commonality of spares is great, commonality of chassis is irrelevant and useless from a maintenance cost perspective (which is by far the bigger cost over the lifetime). Plus, it’s a false economy, since the HIFV and probably the SPH will be front-engined, but the T-14 MBT is rear engined, so that’s going to drive up design costs and force compromises. And Heavy IFVs are expensive–too expensive to buy in the desired quantity. The GCV was cancelled for cost reasons. The US Army also looked into the heavy IFV/heavy APC concept when they were designing the Bradley, but felt it was too costly. And the basically-unarmed Namer is almost as expensive as the Merkava IV. Further, giant vehicle families encourage gold plating, which leads to cost overruns, which leads to a budget kill of the project. So we’re just going to make a new tank. We’ll have other designs for IFVs and SPHs and the like forthcoming as separate designs.

In terms of engine, we’re going to put it at the back like normal people, but otherwise we’re going to be a little different. This is a bit of a throwback in that we’re going to build the ultimate combat tank, not some excessively tall MRAP thing for COIN. Which means we need the best possible engine performance. We oughtn’t neglect the mobility part of the firepower/protection/mobility triad. So we’re going to take a gas turbine engine design, because nothing beats the acceleration of a turbine. Nothing. Specifically, we’re going with the Honeywell LV100-5, originally intended for the cancelled XM2001 Crusader program, and an M1 Abrams re-engine project. This little engine weighs just 1,043 kg, develops 1,500 horsepower, is 25% more fuel efficient than the Abrams’ AGT-1500 at speed, and is 50% more fuel efficient than the AGT-1500 at idle. It also has 43% fewer parts than the AGT-1500, which already has many fewer parts than a comparable diesel engine. It also requires much less cooling volume than a diesel. With the newer high-temperature ceramic turbine blades and the full authority digital engine controls, we can get the gas turbine down to diesel-ish fuel consumption levels. At least for older diesels, or diesels that care about performance. We still get unholy amounts of torque, easy cold starts, and the ability to run on just about any flammable liquid that you can run through the injectors. We could probably get an even smaller engine, but I try to keep these designs at least a bit grounded so that Fishbreath doesn’t complain too much.

I guess we’re moving from back to front on this design walkaround. We next come to the turret section, right in the middle. The turret is completely unmanned, but still has plenty of modular armor. We can’t get away from that, since we’re not stupid. An unarmored gun is vulnerable to mission kills from machine gun fire and shell splinters, plus just about anything heavier. It does no good to put the crew in perfect protection if the tank can’t do its job. So, we still have turret armor, we just have a lot less armored volume to worry about. We have the main gun, the coax gun and its ammo supply, the autoloader assembly, which is mostly behind and below the main gun, a bunch of data cables for targeting systems, and the electric motors needed to move everything. That’s it. So we can make our turret pretty freaking small. Most of its mass will be composite armor modules. The main gun is a 120 mm L/55 smoothbore, that wonderful Nato standard. A few changes from what you might see on your bog standard Leopard 2A6 though. First, there’s no bore evacuator, because the autoloader doesn’t care about fumes, and Cylon-OSHA isn’t a thing we have to deal with in Borgundy. Second, the chamber and recoil system are designed with future, higher-pressure rounds in mind, just in case upgrades to ammunition are needed. Third, we’ve got the necessary data interfaces built in to let us use smart rounds like the Israeli LAHAT gun-launched ATGM or the KSTAM top-attack round from South Korea. It has the usual muzzle reference sensor, muzzle cant sensor, crosswind sensor, and muzzle velocity sensor. It’s stabilized in two axes, with an active damping system to reduce barrel vibrations.

The autoloader is worth discussing here, since it’s a good part of how we’re keeping armored volume down. Rounds are stored in a vertical carousel, point-down. The carousel has a capacity of 60 rounds. The autoloader can load at a rate of about twelve rounds per minute, it can extract unfired shells, and it can eject duds (or spent case bases) out a rear hatch in the turret. This is also used for reloading the carousel. There’s no other access to the carousel without removing the turret. It’s a pain, but there’s nothing to be done about it. The autoloader scans a barcode on each round as it’s loaded in the carousel, so that the stores management system can keep track of how many rounds of each type are loaded and where they are in the carousel. Each round is stored in its own canister to minimize the chance of a catastrophic explosion. Finally, the carousel is designed to safely vent such an explosion away from the crew compartment.

The coaxial machine gun is the usual FN GPMG in 7.62×51 mm, with 4,500 ready rounds and a heavy barrel, since it’s not easily accessible without pulling armor modules. The magazine for the coax gun is accessible through a roof hatch for reloading.

Now, we come to the crew compartment. Here, we have the driver, tank commander and gunner, sitting at their stations. The driver is seated on the vehicle’s left, the gunner is seated in the middle, and the commander is seated on the vehicle’s right. All crewmen have their own hatch to allow for a rapid exit. Hatches are very thick, and are power-opening. The gunner has a single vision block for emergency uses; he does not have the option to operate turned out. The driver and commander have five vision blocks with associated thermal viewing units, and may perform their duties when turned out. The driver has a separate hull mounted thermal viewing unit, capable of 1x and 4x magnification for searching or resolving obstacles. He also has thermal-capable cameras to provide view to the sides and rear. He can cycle through these views on his internal monitors.

The commander can also view through the driver’s thermal cameras on his monitors. In addition, he controls an independent thermal sight mounted atop the turret. This sight is capable of 3x, 6x, 13x, 25x or 50x magnification, and is a third generation3 imaging system. The commander’s independent sight has an Nd:YAG laser rangefinder. The commander can match gun bearing to his sight bearing automatically with the push of a button, and he can fire the main gun (or the coax gun for that matter) himself if he wishes. The commander’s sight is, of course, fully stabilized. Slaved to the sight is a biaxially-stabilized remote weapons station, mounting a 12.7mm M2A1 HMG with 400 ready rounds.

The gunner’s sight is a copy of the commander’s; he has the same 3x/6x/13x/25x/50x magnification options, the same Nd:YAG laser rangefinder, and the same third generation thermal imager. His fire control computer is capable of automatically tracking targets. The gunner’s sight is biaxially stabilized like the main gun. The gunner’s computer can select round types and display remaining quantities of available ammunition by type. The gunner’s sight also integrates the laser guidance system for gun-launched ATGMs with semi-active laser homing guidance like the LAHAT. There’s a second, backup, sight mounted just below the main gun with fixed, 8x magnification and a stadiametric rangefinding reticle, and the gunner can also pull this view into his displays.

Hull armor is necessarily sturdy. Around the crew compartment and ammo stowage area, the sponsons contain only armor, and the thick glacis is sloped 82 degrees4 to maximize effective thickness. This is also the minimum angle for long rod penetrators to have a reasonably significant chance of ricochet, which further enhances survivability. The crew compartment has a thick bulkhead aft to divide it off from the ammo compartment. It also has a thick spall liner to minimize damage in the event of a penetration. NBC protection, plus heating and air conditioning, are provided.

In terms of electrics, the fire control system can do automatic target tracking, and can pull in information from encrypted line-of-sight, frequency-hopping, tactical radios as well as satellite tracking data if available. Information includes the vehicle’s position, positions of other friendly vehicles, information on known or suspected enemy positions, and information on terrain and obstacles. Information from ground surveillance aircraft5 can also be pulled into the network. For more traditional means of data gathering, there’s an external telephone provided on the hull to allow nearby infantry to talk directly to the crew.

Looking to the flanks, we come to the suspension. There are seven roadwheels per side. The suspension is a controllable hydropneumatic system, so the Myrmidon can lean and adjust ride height. Ground clearance is adjustable from 14 cm to 74 cm. I would love an actively damped suspension like the early-90s Williams F1 cars used to have, but the heaviest things those have been put on is a CV90, which, as we’ll soon see, is quite a bit lighter than the Myrmidon. We do have a dynamic track tension system though to keep the optimal tension on the tracks without requiring manual adjustment. The flanks are protected with heavy side skirts that contain composite armor. These can be supplemented with reactive armor cassettes, especially useful for operations in built-up areas.

Let’s talk active protection. Alas, it will drive the cost up, but all the cool kids have one on their tanks, so we should too. Plus, it saves us the trouble of trying to protect the sides and top of the tank from something like a Hellfire missile. The first part is seeing the missile coming, and the easiest way to do that is with small radars. Naturally, we locate these around the turret to provide an all-around view, like the systems on the Merkava Mark IV or the K2. This data will also be available for the crew so they can counterattack. If a launch is detected, the crew has the option to swing the turret towards the launch, presenting the thickest armor and simplifying return fire. The crew can also trigger smoke grenade dischargers to throw up a smoke screen that contains thermal obscurants. We will also integrate the Israeli Trophy hard-kill system. Trophy has successfully intercepted a number of high-end Russian anti-tank weapons, including the Kornet, the RPG-29, and the Konkurs. Field tested is excellent. We’ll be keenly interested in Rafael’s follow-on system.

Now let’s get down to the figures for dimensions and a cost guesstimate. The hull is 8.7 meters long, and is 3.657 meters wide with the skirts detached. We’re constrained in width by the need to fit on road and rail transporters. Fuel is stored in the aft section of the sponsons, on either side of the engine compartment, below the engine in an “inverted saddle” arrangement, and around the ammunition carousel. The fuel tanks are built with a heavy internal baffle structure to increase their protective value. 1,500 L of fuel are carried internally. A pair of 200 L fuel drums can be carried, one on either side of the turret, in quick-release brackets. Obviously, these shouldn’t be mounted in areas where heavy combat is expected. We reckon the Myrmidon would tip the scales at about 57 tonnes.

Let’s talk cost. How bad will this tank be? Well, we’ve kept it simple above. Hull construction is of welded steel; unlike on my Thunderbolt design workup, the Myrmidon uses no special techniques to reduce weight. Armor does have wonderful things like super-hard steel and depleted uranium, which is going to up the cost a bit. We’ve got plenty of nice electrics, but nothing that hasn’t been done before. Even the autoloader was done before in the late 80s as part of the M1 TTB project, and the LV100-5 engine was worked up for the Crusader artillery project. Uralvagonzavod claims that the Armata will come in at about $4 million, but we’ll see how that works out for them. Russia also claims they’ll order 2,300 T-14s. Again, color me skeptical. To be frank, I don’t believe a figure of $4 million dollars for the T-14, and some analysts reckon a rather higher figure, something more like $8 million. So, we can’t use a direct comparison. The K2 Black Panther is pretty similar to the Myrmidon in terms of complexity and electronics fit. The configuration is somewhat different in that the K2 is traditionally configured. On the other hand, the South Koreans aren’t ordering a lot, and we plan6 a big, Russian-sized order to equip our armored divisions. The K2 comes in at a bit over $9 million per unit. We reckon we can come in under $8 million.

1.) Well, production-ish. Like many other projects in Putin’s Russia, there’s a lot of question as to how many of these are actually going to get made. They’re not making many PAK FAs for example, and they may or may not make many T-14s. That said, the one in the Great Patriotic War Victory Parade was a pretty complete pre-production or low-rate initial production model, which is a lot farther than anyone else has gone with this.
2.) More precisely, tactical “idle”, which is actually 60% of max RPM, because throttle response on a gas turbine is terrible. The torques are outrageous though, again because turbine.
3.) i.e. it’s a dual band (MWIR and LWIR) imaging unit.
4.) From the vertical. Duh. Measuring armor angle from the vertical makes more intuitive sense to me, since a measure of 0 degrees–completely vertical–conveniently equates to a line of sight thickness multiplier of 0.
5.) e.g. JSTARS
6.) If the Russians can do it, so can we. We’re totally ordering something like 2,300 Myrmidons.

4 thoughts on “Armata Response 1: Myrmidon MBT

  1. John Rowe

    “Usually, the Russians tend to make things that are rugged, ugly, and simple. See, the AK-47, the Mosin-Nagant, and the T-34. They work. But they are hardly innovative.”

    What? The T-34 was the finest tank design of it’s era. It was years ahead of the competition and it fundamentally changed tank design forever. I’d call that pretty innovative!

    Reply
  2. John Rowe

    I really wouldn’t get too excited by the new breed of Russian armoured vehicles. They may look pretty cool on parade, but their development is far from over and they are years, perhaps as much as a decade away (dependent on funding) from fielding. And I remember all the hype about the BMP-1. We didn’t find out about the paper-thin armour or the fuel tanks in and around the passenger compartment for decades. Don’t make the same mistakes that western intelligence made: the technology is always the best of all worlds. Of course, those assessments happened to support the case for greater western expenditure so I hardly think their mistakes were all that innocent…

    Reply
    1. parvusimperator Post author

      Well, yes, but that’s sort of the conceit here. ‘IF you believed the hype, what would your hard counter be?’ is the idea.

      And yes, it’s Still Morning in Borgundy, so of course it’s a terrifying boogeyman tank.

    2. parvusimperator Post author

      Also, I have some copies of Armor reference materials from the 80s, and it’s really cool to see the T-80 evolve from being a super death tank to something a lot more reasonable.

Leave a Reply

Your email address will not be published. Required fields are marked *