Tag Archives: militariana

StG v. LMG

I got the awesome book Sturmgewehr! recently from Collector Grade Publications, and it contains tons of great stuff. It’s got a detailed history of the crazy internal politics and the various iterations of the prototypes that would eventually become the world’s first assault rifle.

All of that is awesome. And that alone would be worth the price of admission. Engineering prototypes are cool, and it’s great to track the evolution of an idea as it intersects with operational realities in testing. Plus, despite (or perhaps because of) being a dictatorship, the Third Reich had some crazy political struggles, with all kinds of subterfuge and pet projects and competing notions. Right there, I had my money’s worth.

But I was hoping for more, and happily Collector Grade (and the Waffenamt’s obsessive documentation) delivered. What I was really interested in was how the Germans figured they would be deploying this new weapon. Clearly, an assault rifle can replace bolt action rifles, semiautomatic-only rifles like the Gewehr 43, and submachine guns like the MP-40. That’s most of the weapons of the squad right there. But what about Hitler’s Buzzsaw? Can the StG-44 plausibly replace the MG-42? Did the Germans figure this was a net gain or a net loss?

Let’s look at the technical considerations for that very comparison, comparisons forged in the hellish engagements of the Eastern Front. I’ll have a follow up where I look at the 1944 organization tables built with the StG-44 in mind. Note that the Germans frequently deployed prototype StG-44s to combat units to gain feedback. One of the questions asked was “Can this weapon replace the MG-42 in an infantry squad?”

Anyway, let’s grab some relevant figures for comparison, so we have them all in one place. The MG-42 weighs 25.51 lbs, is chambered for 7.92x57mm Mauser, is belt fed, and fires at about 1,200 rounds per minute. We’re concerned primarily with the light machine gun use case, so not supported by the excellent tripod. While the MG-42 could be operated by one man, in practice a second man was designated to be the ammunition bearer, and would also help carry spare barrels.

The StG-44 weighs about 10 lbs unloaded, is chambered for 7.92x33mm Kurz, is detachable box magazine fed, and fires at about 500-600 rounds per minute (cyclic). A lot like a modern assault rifle.

When comparing the two options, it should be noted that this was not a one for one replacement. That is, the StG-44 would not be issued one per squad or fireteam in the fashion of the M1918 BAR. Rather, it was a shift to a ‘distributed firepower’ model, something like that of the Soviet submachine gun regiments. Clearly the StG-44 was a lot handier, and could be easily used in a trench or in built-up areas. A squad of StG-44s didn’t provide one obvious target for enemy suppression, and when relocating, did not have a significant drop in effective firepower as the machine gun was moved.

While the firepower of one MG-42 was significantly greater than that of one StG-44, given the different rates of fire and the relative capacities of a belt and a box magazine. Since the StG-44 was to be deployed en masse, this wasn’t a focus of comparison. It may interest the reader to know that Wehrmacht planners figured three StG-44s were roughly equivalent in close-in firepower to one MG-42.

The one big advantage the MG-42 held was at range. The MG-42 was still effective at ranges beyond 500 meters, but the StG-44 was never designed to be effective at these ranges. In the evaluations, units that were stationed in areas of Russia with long sightlines placed a high value on the MG-42 and keeping it available. Units that did not have many long sightlines available at the time of evaluation tended to value the handiness of the StG-44, and reckoned it could completely replace the MG-42.

Next time we’ll look at the units equipped with the StG-44, at least as they were drawn up on the organization tables.

Giant OTV/IOTV Weight Chart

I do like playing around with weight accounting, and I do like tinkering. The following charts were pulled from a US Army service manual1 on the Interceptor Body Armor System. They’re remarkably annoying to find online in detail, and details are important. Especially if you want to play with your own configurations. So in the interest of knowledge and thoroughness, the charts are reproduced here. All weights below are in pounds.

First, the Outer Tactical Vest. This is the vest you see in early Operation Iraqi Freedom Photos.

ComponentXSSMLXLXXL3XL4XL
Base vest6.646.957.668.389.519.8410.8111.79
Throat Protector Assy.0.250.250.250.250.250.250.250.25
Yoke and Collar Assy.0.900.951.001.101.201.301.401.50
Groin Protector Assy.0.700.700.700.850.850.850.850.85
DAPS5.505.505.505.505.505.505.505.50
ESAPI Plates (pair)7.609.5010.9012.5014.2014.2014.2014.20
ESBI Plate Carriers (pair)2.802.802.802.802.802.802.802.80
ESBI Plates (pair)5.105.105.105.105.105.105.105.10
Total System Weight29.4931.7533.9136.4839.41>39.8440.9141.99

Next the Improved Outer Tactical Vest, Gen I. This reconfigured the armor a bit and added a quick release system for easier medic access to a wounded soldier, among other features. Note also the addition of some long sizes, and that the Axillary protection system (the A in DAPS) and the carriers for the ESBI side plates are now integrated into the IOTV base vest.

ComponentXSSMMLLLLXLXLLXXL3XL4XL
Base Vest9.019.339.8610.6010.9711.2411.9812.5113.5215.8016.17
Front Yoke/Collar Assy.0.560.560.560.560.560.560.560.560.560.560.56
Rear Yoke/Collar Assy.0.800.830.880.880.910.910.960.961.021.171.17
Groin Protector Assy.0.720.720.720.720.870.870.870.870.870.870.87
Lower Back Protector Assy.0.670.670.670.670.670.670.670.670.670.670.67
Deltoid Protector Assy. (pair)2.002.002.402.402.402.402.902.902.902.902.90
ESAPI Plates (pair)7.609.5010.9010.9012.5012.5014.2014.2014.2014.2014.20
ESBI Plates (pair)5.105.105.105.105.105.105.105.105.105.105.10
Total System Weight25.4628.7131.0931.8333.9834.2537.2437.7738.8441.2741.64

Finally, we come to the Improved Outer Tactical Vest, Gen II. This vest brought a bunch of minor improvements.

ComponentXSSMMLLLLXLXLLXXL3XL4XL
Base Vest9.619.9310.5611.3011.7211.9912.7813.3114.3216.6016.97
Front Yoke/Collar Assy.0.560.560.560.560.560.560.560.560.560.560.56
Rear Yoke/Collar Assy.0.800.830.880.880.910.910.960.961.021.171.17
Groin Protector Assy.0.720.720.720.720.870.870.870.870.870.870.87
Lower Back Protector Assy.0.670.670.670.670.670.670.670.670.670.670.67
Deltoid Protector Assy. (pair)2.002.002.402.402.402.402.902.902.902.902.90
ESAPI Plates (pair)7.609.5010.9010.9012.5012.5014.2014.2014.2014.2014.20
ESBI Plates (pair)5.105.105.105.105.105.105.105.105.105.105.10
Total System Weight27.0629.3131.7932.5334.7335.0038.0438.5739.6442.0742.50

That’s as far as this copy of the manual goes. Probably for the best. That’s more than enough tables for one day.


  1. TM 10-8470-208-24&P 

Ballistic Combat Shirt

Body armor. Don’t go outside the wire without it, right?

The upper thoracic cavity is where the heart and lungs are. That’s what we’re trying to protect. And hard plates like ESAPI do a good job of protecting the front and rear of the upper thoracic cavity. The sides get more difficult, because you have arms. There’s still a lot of important blood vessels, and rather complicated joints in the area above and to the sides of where plates go, regardless of whether you are wearing an armor carrier like the IOTV or a simpler plate carrier rig.

The IOTV comes with a number of accessories to protect the neck, collarbone region, shoulders, and the sides of the upper thoracic cavity. These components are the yoke and collar assembly and the Deltoid protector. These consist of an inner soft armor component, an outer cordura casing, plus attaching hardware. In size L the total weight of these accessories is 3.87 lbs.

We can contrast that with a ballistic combat shirt. This is the usual modern style of combat shirt, with heavier material for the sleeves and upper torso and lighter material for the abdomen, that’s designed for (somewhat) more comfortable wear with body armor. In the BCS, the upper chest and shoulder region contains segmented soft armor panels, providing the same ballistic protection as the aforementioned yoke and collar assembly and the deltoid protector, but the total weight of a size L Ballistic Combat Shirt is only 3.2 lbs. This looks like about half a pound of weight savings, but remember, this includes the combat shirt. A modern-style combat shirt sans armor weighs about 0.9 lbs.1 So, for system weight, we’re looking at more like 1.4ish lbs. of weight savings. Not a lot, but every little bit helps.

Weight savings isn’t the only gain here. We’re removing a lot of bulk from the shoulder area, which is a big win in terms of how much it sucks to wear. Deltoid protectors get caught on things. They make narrow doorways, crawlspaces, and vehicle hatches more annoying to move through. Less bulk means you can move through these areas faster. The bulk also makes weapon manipulation more annoying. In testing, soldiers unanimously praised the new ballistic combat shirts for being less bulky and annoying. The loss of the various straps and buckles to attach all the above components is probably also a big hit.

It’s often very difficult to reduce soldier load by reducing protection for the regular “line” infantry. Special forces guys play by different rules, but the regular grunts are usually stuck with a heavy load. Sometimes it takes some out of the box thinking to be able to make some small gains.


  1. Source here, though they don’t tell me size. Shouldn’t matter much though. “A bit less than a pound is probably a fair approximation for most modern NyCo shirts with this style of cut and a flame-resistant treatment. 

Body Armor Ratings

Body armor toughness comes in a bunch of different flavors. Over here in the US, we have a couple standards. There’s the National Institute of Justice (NIJ) standards, standards used by the US military, plus a bunch of other marketing-speak. Let’s break it down.

First, NIJ:

TypeProtection
Level II9x19mm (124 gr. FMJ @ 1,305 fps), .357 Magnum (158 gr. JSP @ 1,430 fps)
Level IIIA.357 SIG (127 gr FMJ @ 1,470 fps), .44 Magnum (240 gr. SJHP @ 1,430 fps)
Level III6 rounds 7.62x51mm M80 (148 gr. FMJ @ 2,780 fps)
Level IV1 round 7.62x63mm (.30-06) M2 (166 gr. AP @ 2,880 fps)

NIJ ratings are commonly used for armor marketed to law enforcement and civilians. Some notes:

  • All velocities listed above are approximate, and should be understood to be +/- 30 fps.
  • Level II and IIIA are soft armor, and are understood to be reasonably multihit.
  • Level III and IV are hard plate armor.
  • Level IV is required to be able to withstand at least one round of 7.62x51mm M80 FMJ. It is not required to meet Level III multihit standards (6 shots) against M80.
  • You may notice there is no testing required against SCHV rounds (e.g. 5.56x45mm, 5.45x39mm). Level III armors may or may not stop SCHV rounds. Level IV armors are required to stop at least one SCHV round.

This last point leads lots of manufacturers to test against various SCHV (usually 5.56mm in the States) rounds, which is good. Do note that “Level III+” and “Level III++” are not NIJ certifications. Those are marketing nonsense. Read the list of test rounds carefully. Some materials used for Level III plates have problems with M855 steel-core (semi-armor piercing) rounds, and some other materials used in Level III plates have problems with the speed of M153 rounds, especially out of a 20″ barrel. Ideally, your plate will withstand both.

What about military plates? I can only speak for the US plates at present. These plates are made from ceramic materials. The US Military uses its own testing standard, not the NIJ one. SAPI1 plates are designed to resist three hits of “up to” M80 7.62x51mm ball. There’s also ESAPI2, which has a similar multihit standard against M2 .30-06 AP rounds. And then there’s XSAPI. Because somewhere out there, some terrorist has some exotic high power super armor piercing 7.62x54R mm that will punch through ESAPI plates and we need to stop that round too. It’s also multihit. Against something exotic, but I don’t know the test round. Maybe tungsten-cored .30-06?

Anyway, as you’d expect, more protection means more weight:

SizeDimensionsSAPI WeightESAPI weightXSAPI weight (Approx)
XS7.25″ x 11.5″2.8 lbs.3.75 lbs.4.7 lbs.
S8.75″ x 11.75″3.5 lbs.4.6 lbs.5.8 lbs.
M9.5″ x 12.5″4.0 lbs.5.5 lbs.6.9 lbs.
L10.125″ x 13.25″4.6 lbs.6.3 lbs.7.9 lbs.
XL11″ x 14″5.3 lbs.7.2 lbs.9.0 lbs.

Do note that all US Military plates assume they are mounted over the OTV, IOTV, or equivalent military-spec soft armor for them to perform as advertised. To the best I am able to determine, XSAPI plates have never been deployed in combat. They sit in depots because they’re too damn heavy and because the expected threat never materialized. Also, remember the above is per plate. Double it.

That military soft armor is tested to a different standard than the NIJ one. The military is concerned with fragmentation, primarily, so they look at the V50, i.e. the speed at which a given projectile must be going to have a 50% chance of penetration. This number is chosen because it’s a lot easier to work with than V0 from a measurements and statistics perspective. To simulate artillery fragments, the US Army tests with steel projectiles with weights of 2, 4, 16, and 64 grains. Steel doesn’t deform like lead pistol bullets do, so this is sort of a different challenge than regular pistol bullets. The V50 for a 124 grain 9mm NATO round against the current soft armor in the IOTV is about 1,525 fps, which is pretty similar to that of most Level IIIA soft armor panels. On the other hand, the NIJ requires Level IIIA panels to also stop .44 magnum rounds, and the US Military doesn’t.

Next time, we’ll take a more in-depth look at soft body armor systems.


  1. Small Arms Protective Insert 
  2. Enhanced Small Arms Protective Insert 

Fishbreath Hefts: ALICE (large) Hellcat Pack Review Part II

The year is 2017. Your correspondent recently purchased and reviewed an ALICE large field pack and frame, plus some modifications, to make a package sometimes known as the ALICE Hellcat1. Or rather, reviewed in part: no review of field gear can be considered complete without some actual field time, and that’s what this article addresses.

If you, like me, do not live under a rock, you may have heard that there was recently (at time of writing) a total solar eclipse. You can be sure I wasn’t going to miss my chance at seeing one, and you can be similarly sure that I wasn’t going to spend the money on a hotel. Some college friends decided a camping trip was in order, and I decided to tag along. The destination: Shawnee National Forest. The plan: unimproved camping near the Garden of the Gods2.

That brings me to the first part of this review: how roomy is the pack? Well, it’s complicated. The ALICE pack is shorter than your average backpacking pack from top to bottom, but wider and deeper. This has its upsides and its downsides. In the bottom of the pack, I could fit things next to my sleeping bag in both directions—both toward the front face of the pack3 and to the sides. I packed my ground cloth in front of my sleeping bag, and used the space to the side for the base of my tent.

On that note, my gear generally is not backpacking gear—although I grew up camping, I mostly grew up camping out of cars. The family two-man tent comes in a bag twenty-seven inches tall, and weighs something like eight or ten pounds4. My sleeping bag is a backpacking model, I suppose, but it’s also a three-season bag, and as such doesn’t pack down as small as a summer model might. In general, I made no particular effort to bring lightweight or compact gear, and overpacked generally for the sake of the experiment5. I ended up with a pack which weighed about thirty-five or forty pounds and filled most of the available volume of the pack. As the packing list in the footnote there suggests, this was not an ultralight or even an efficient trip. Packing as luxuriously as I did, an overnight or weekend trip is plausible. I expect I would have very little trouble packing for a longer stay if I had more appropriate gear—with access to water on-site, compact dehydrated food, and no extra-fancy mess equipment, I suspect I could pack a good week’s worth of summer clothing.

Now that we’ve loaded the pack, we can talk about how it fits and how well it carries weight. As far as fit goes, I don’t know if I could recommend it to someone very much taller than me. As I said in the previous article, I’m USGI-standard height, a hair over 5’9″. The MOLLE straps on my frame can be adjusted to ride lower on it (thereby moving the hip pad nearer to the shoulder straps for a shorter person), but they’re already at the upper limit of their adjustment. On my back, the pack fits perfectly, with the MOLLE hip belt extending from about belly-button height to my hip bones. I had a few taller people give it a try, and it didn’t fit them nearly as well. I suspect there is some further room for adjustment—by lengthening the bottom of the shoulder straps, the pack could be made to ride lower, and likely fit long torsos better—but the primary adjustment, that effected by moving the entire yoke up and down, is only really useful for average-to-short men and short-to-tall women.

We’ve established it fits people my size and smaller well. How does the ALICE Hellcat carry weight, though? As described above, the ALICE pack is short and squat relative to modern backpacking gear. Taller, flatter packs, such as the latter, put the center of gravity higher and closer to your back. Well-packed, they’ll primarily press down on your hips; the shoulder straps are primarily to stabilize the load and keep it close to your body. The load on the shoulders tends to be a downward load. The ALICE pack is a little different. It is, once again, short. Even with a sleeping roll lashed to the top, it only comes up to about the middle of my head. It doesn’t exert a downward force exclusively; rather, it exerts a sort of pivoting torque in addition to downward pressure. It’s as though the waist belt is an axle, and the pack is trying to fall away from your back.

I wouldn’t characterize this as bad, though. It’s just different. The weight on the shoulder straps, is on your upper chest just below the shoulders. The pivoting movement helps to hold the pack onto the hip pad. My forty-pound pack was no less comfortable than I would expect out of a more traditional pack. Some adjustment of the shoulder straps is necessary; there’s a middle ground I had to find between, “Too tight up top, weighing on my shoulders,” and, “Too loose up top, pulling me backwards.” Once I found it, though, I found myself able to carry it neither bent forward nor pulled backward, and as an added bonus, the smaller top-to-bottom height made for easier crouching under obstacles.

As far as hiking goes, we only had to walk a few hundred yards in total with our packs. I can’t speak to the Hellcat’s comfort over the course of a long hike. I have no reason to think it would be significantly worse than it was with my static testing and light hiking. The MOLLE straps are excellently padded and provided good comfort, even when loaded heavily by backpacking standards.

So, we got to the campsite. How is the pack to live with? Again, not bad, if perhaps not up to the same standard as present-day backpacking gear. One of the bigger things to note (again) is that the ALICE rucksack has no bottom access. It’s traditional to pack a sleeping bag at the bottom of the pack: something bulky but not terribly heavy. Many modern packs have a zipper or some other means by which items at the very bottom of the pack may be gotten at without having to unpack everything on top of them. With the Hellcat, you have to pack a little more carefully. Follow the two cardinal rules of packing (rarely accessed things go at the bottom, eavy things go closer to the frame) and you’ll be fine.

All convenience is not lost, though. The ALICE large pack has six exterior pockets, plus one pocket in the top flap. The six pockets come in three different sizes: three small (up top), two medium (on the sides down below), and one large (bottom center). The large pocket fits a mess kit and notebook with room to spare. The medium pockets are roughly three-espresso-cup moka pot-sized. The small pockets are large enough to fit a hard-sided glasses case, or an alcohol burner, pot rack, and folded aluminum foil windbreak. All are easily accessible without opening the pack or even loosening the compression straps. The top flap pocket was originally designated a map pocket and is not rated for heavy items, but it is very roomy. It easily held my maps, flashlight, phone, charger, cables, and earbuds, and could have fit much more.

The lashing points, too, are a wonderful piece of old-time fun. Putting the MOLLE straps onto the ALICE frame yielded a pair of straps used to secure the ALICE shoulder straps to the frame; I borrowed those, ran them through the buckles on my British P37 canteen carrier, and attached it to the outside of my pack. There are a good dozen or so lashing points spread out over the pack. The full Hellcat pack uses some of them to attach the MOLLE sleep system carrier, and potentially uses others to attach the MOLLE sustainment pouches, but even that would leave a number of them open for other gear. The compression straps are also very generous in length, and can readily be used both to hold gear to the top of the pack (I had a fire kit, a sleeping pad, and a spare water bottle up there) and to tie it to the bottom of the pack. If you want more strappage, you can find MOLLE accessory straps on Amazon which should serve just fine for lashing items to the pack.

Speaking of lashing and straps, the pack has exactly zero zippers. All the external pockets close with snaps. The main compartment has a drawstring closure, and the compression straps hold the top flap down on top of it. Despite that lack, I didn’t find opening the pack to be all that inconvenient. A little on the slow side, perhaps, since you generally have to loosen both compression straps, but certainly livable.

Lastly, the ALICE pack is definitively not waterproof, or even water resistant, and doesn’t come with a pack cover or dry bags6. You’ll have to work out your own solution for keeping things dry. For myself, it was lots of ziploc bags, some garbage bags, and one garbage bag big enough to serve as a pack cover. The lack of waterproofing out of the box is freeing, in a sense; it doesn’t lock you into any one solution.

So, the bottom line. Is it worth the buy? Provided it fits you, I say it is. My pack cost $70, including shipping, and if you have a nearby surplus store you can probably find one for a similar price. (That is, the pack and the frame together.) The MOLLE straps and belt came to about $30, again including shipping, and again with the similar caveat about brick-and-mortar storefronts. For the money, you get more pack, and more durable pack, than you might shopping for a traditional backpacking pack on the same budget. That said, I wouldn’t pay much more than $100 for the whole setup unless you’re very into the Hellcat’s modularity7. Once you get to, say, $150, you’re in the range where you can get a used or discounted pack from REI. $200 will buy you a new one. The quality of life there is, admittedly, better, and you have a warranty to go with it.

All told, though, I’m happy with my purchase. For my very occasional backpacking trips, a proper pack makes little financial sense. For a solid discount over even cheap hiking packs, I have something which works very nearly as well. Who can argue with that?


  1. Well, kind of. As I say in the previous article, one of the characteristics of the Hellcat is the MOLLE sleep system carrier attached to the bottom of the ALICE medium pack; I just went for a large pack right off the bat, which yields approximately the same capacity. 
  2. The one in Illinois, obviously, not the one in Colorado. 
  3. That is, the side opposite the straps. 
  4. It’s an excellent tent. It’s been bone-dry inside after taking a full day of rain on the fly. It just isn’t small or light. 
  5. For reference, I brought the following: sleeping bag and pad, tent, large cooking pot, mess kit, dinner for the whole group (three cans of chunk chicken, two boxes of rice and beans), an alcohol-burning stove, pot stand, and foil windbreak, a moka pot for coffee, coffee and stove fuel, a hoodie, cargo pants and cargo shorts, pajama pants, three t-shirts, three pairs each of underwear and socks, my trusty P37 canteen, a separate 20-oz. water bottle, maps, phone charger, sunglasses, various plastic bags to hold things and serve as pack covers, a pad for sitting on, and earbuds. 
  6. At least mine didn’t. It was issued with dry bags, though, and the full kit list did include a pack cover. 
  7. Which is to say, you like the idea of bringing the sleep system carrier and sustainment pouches as necessary, or leaving them behind when you don’t need them. 

Resurrected Weapons: LOSAT/KEM/CKEM

I’m lumping these together because they all operate on the same basic principle, and are really just different sized versions of the same concept. This idea keeps coming up in a bunch of different sizes and a bunch of different guises.

Antitank missiles today use shaped charge(s) to penetrate armor. We might call this a “chemical energy” method of penetrating armor. More technically, we might call it the Munroe Effect. This is really effective, and doesn’t depend on missile speed. However, there are lots of technologies today to counter this method of armor penetration, including reactive armor (both explosive and non-explosive types), spaced armor, various forms of composite armor, and cage armor. And we can mix and match the above to get some really hard to kill vehicles.

That said, the clever observer will note that most tank guns today use some kind of APFSDS round, a kinetic energy penetrator. Heavy alloy dart moving very fast. Present armor technology makes this a lot harder to defeat than a shaped charge. LOSAT (later renamed KEM) and CKEM would try to apply this same warhead type to an antitank missile. Start with a heavy metal warhead, add a big honking solid fuel rocket motor and fulfill your need for speed.

The missiles were a little different. MGM-166 LOSAT/KEM was 2.85 m long, 16.2 cm wide, and weighed 80 kg. It had a top speed of about 1,500 m/s or 5,000 fps. At this speed, it reached its maximum range in under 5 seconds.

CKEM is the newer, Compact version of the concept. It’s also faster because of rocket motor improvements. It was build in the late 90s/early 2000s to fit a roughly TOW-sized footprint. CKEM was a little longer than TOW at 1.5 m, but matched it’s 15.2 cm diameter. Maximum speed was Mach 6 (about 6,700 fps or 2,047 m/s).

This ends up being a great idea for a number of reasons. We’ve already mentioned that it’s a lot harder to protect a vehicle against APFSDS type rounds. In this case, there is no replacement for velocity. You’ll need heavy armor to stop what’s incoming. Further, a lot of the complicated guidance systems can be done away with. Both missiles had minimal guidance, and relied on lead computations in the launcher to account for any target movement. Given the speeds involved, this is more than sufficient. Finally, being a very fast moving, relatively unfragile thing, it’s a lot harder for modern active protection systems to defeat. All big wins.

Downsides? Well, most of the development and system cost is the motor. We need a relatively small engine that can deliver a lot of thrust very quickly and will also remain stable in storage. That’s not really insurmountable, or a terrible cost driver. Especially when compared to the high-end thermal-imaging based fire and forget systems around these days. The other obvious problem, which doesn’t come up in documentation I’ve seen, is minimum ranges. Even a really high impulse motor will take some time to accelerate that missile up to speed, so there’s going to be a dead zone where the missile will not work as advertised. I’d also expect the motor to be bulky.

Bulk, even for the smaller CKEM, is still an issue. It’s certainly not man-portable. But it would make an excellent antitank missile for vehicles. A JLTV, or a Bradley would make a great carrier vehicle for these. We love tanks, and thus we love antitank missiles. Just like the Russians, who have new tanks. As do the Chinese.

Also, I’d love to see these trialed from helicopters and aircraft. The size isn’t terrible, and the speed should help with the fire control problem.

Verdict: Funding approved by the Borgundy War Department Army Ordnance Board

Project LSAT Weight Comparisons

As a follow-on to my earlier post analyzing the LSAT project, I provided this table with the best comparative data that I can find. Note of course that LSAT systems are prototypes, and weights might change should these come into production. All LSAT data is for the more successful polymer-cased, telescoped (PCT) rounds.

First, the machine gun table:

WeaponM249 SAWStoner 96LSAT LMGM240BLSAT GPMG
Unloaded Weight17 lbs10.5 lbs9.4 lbs27.6 lbs14.7 lbs
Caliber5.56 NATO5.56 NATO5.56 PCT7.62 NATO7.62 PCT
Ammo weight (200 rd belt)6.92 lbs6.92 lbs3.8 lbs13.4 lbs7.5 lbs
Loaded Weight23.92 lbs17.42 lbs13.2 lbs41 lbs22.2 lbs

The 6.5 mm PCT round is very nearly the same size and weight as the 7.62 mm PCT round, so the 6.5 is omitted for simplicity. This also provides a better comparison with the existing M240B. A 200 round belt was used for ease of comparison, though 100 round belts are also commonly used.

Now, the carbine table:

WeaponM4 CarbineLSAT Carbine
Unloaded Weight6.5 lbs6.5 lbs
Caliber5.56 NATO5.56 PCT
Ammo weight (30 round magazine)1.05 lbs0.69 lbs
Loaded Weight7.55 lbs7.19 lbs

The carbine designs are less well developed. I don’t have enough data on the prospective 7.62 mm/6.5 mm PCT ‘battle rifle’ to include it in the table (specifically, I lack the weight of a loaded magazine). We can see that the weight savings are much less significant here, amounting to 2.5 lbs for a standard combat load of 210 rounds. Which is nice, but not quite as massive as the savings for machine gunners.

The General Issue Plate Carrier

The standard wisdom for current infantry protection is to use rifle plates and an armor carrier, which provides fragmentation protection for more area of the torso than the plates do. The armor carrier means that the lower abdomen, area around the plate, and the shoulder straps are going to be rated against fragments. Of course, this comes at a bulk and weight penalty. In Afghanistan, US special forces often took to wearing plate carriers. Plate carriers carry only plates. No soft armor panels, besides optional armor backers. They’re a lot lighter and less bulky. For mountain operations, this is awesome. Of course, there’s basically no artillery threat in Afghanistan. Let’s look at whether or not this makes sense in the general case.

We’re going to compare the IOTV with front and rear plates to a lightweight plate carrier with front and rear plates, specifically the Crye JPC. For the IOTV, we’re not going to include side plates and carriers, since the plate carrier we’re choosing doesn’t come with side plate pockets. Also, these plates provide protection for the abdomen, not the upper thoracic cavity, and the abdomen is a much less critical area. Both would need supplemental protection for the neck, shoulder, or groin. Removing accessories simplifies the comparison a little.

As usual, we’ll be using medium size items for comparison. We’ll also be using a pair of ESAPI plates for both. Two ESAPI medium size plates weigh 10.9 lbs. The medium size IOTV weighs 10.56 lbs. The medium size Crye JPC weighs 1.3 lbs. Since we’re using ESAPI plates, which require plate backers, we’ll need to add those, which gives us another 2.4 lbs.

So we might break this down into three options. The IOTV alone weighs 10.56 lbs. The JPC with plates weighs 14.6 lbs. The IOTV with ESAPI weighs 21.46 lbs. So switching to a a plate carrier with plates instead of an armor carrier with plates saves us about seven pounds in our example, though the exact weight will vary if we choose different models.

Clearly, the armor carrier with plates and plate carrier with plates are both going to be very effective against most rifle rounds. Also clearly, the plates will stop fragments that hit them. The armor carrier will provide fragmentation protection around the abdomen, around the border of the ESAPI plate and on the shoulder straps. Weight for marginal hit protection is what’s in question here.

Overall, I’m inclined to favor the plate carrier given the weight savings. There’s entirely too much load on our soldiers already. It may interest the reader to note that the ESAPI plates were deployed in Iraq to combat fragments from IEDs, so perhaps the traditional kevlar-type soft armor fragmentation protection is insufficient. It is important to understand the expected threat level.

Further weight savings might be obtainable with a different choice of plates. ESAPI plates (and the SAPI plates they were derived from) were intended to be worn over soft armor, and the soft armor backers are required to get the designed level of protection from the plates. We’ll look at some alternative plates in the near future.

M230 LF Autocannon

Autocannons are awesome. Earlier, I talked about the ASP-30, an autocannon for light vehicle applications that fired the 30×113 mm round. This gives an explosive payload like a 40 mm grenade, but has a nice flat trajectory. It’s also currently the ammo of choice for the gun on the excellent Apache attack helicopter. While I love looking at old projects, we might consider if there’s another way to get similar capability without all the R&D costs.

Enter the M230 LF. Orbital ATK’s M230 is the gun used on the Apache helicopter. It’s externally powered and it uses a linkless feed, which is light and convenient for aerial applications. It’s less than ideal for vehicles though. The M230 LF has a longer barrel and is adapted for a linked feed. It’s still externally driven, using ground-vehicle-convenient 24V DC electrical power, and has a reduced rate of fire.

In terms of vehicle mounts, light turrets, and the increasingly popular remote weapons station, the M230 LF has a lot to offer over the standard Mk. 19 automatic grenade launcher or M2 heavy machine gun. Just like the ASP-30, it’s got a much flatter trajectory than the Mk. 19, giving it increased range and improved precision. Having an explosive payload gives it improved lethality over the .50 BMG round. The M230 LF has better range than the M2. Also, it’s externally powered, so it doesn’t need solenoids to cock it or work the trigger. It also improves on the ASP-30 by being a system that’s already in the inventory, so spare parts are already present.

Awesome. However, the M230 LF is not a perfect replacement for the M2 and the Mk. 19. It is not ideal for man-portable operations. It isn’t really designed to be broken down into smaller loads like the M2, and it weighs about twice as much. It’s not compatible with existing tripods, and the external drive functionality that made it so well adapted to turret use is problematic for infantry operations. You can’t have everything.

I am happy to report that sensible people are deploying the M230 LF on shipboard remote weapons stations and on vehicles. Oshkosh has even put some on their JLTV-winning design.

Fishbreath Hefts: ALICE (large) Hellcat Pack Review Part I

The year is 1975. The brand-new ALICE load-carrying equipment has been released, and it brings relief for American soldiers worldwide from a system of equipment which has its roots in the mid-1950s. Improved webbing, nylon for everyone, not just the men in Vietnam, better pouches, suspenders, and belts, and at last, a proper frame pack as part of the general issue kit1, with both a medium and large rucksack available.

ALICE generally, though it’s an interesting system and what I would call the first truly modern American load-carrying equipment pattern2, is not our topic for today. Our topic for today is, instead, the ALICE pack frame, its associated belts and straps, and the large ALICE rucksack.

First, the frame. Primarily constructed of tubular aluminum, it also has some flat aluminum crossmembers for rigidity. Some D-rings at the top provide a place for shoulder straps to attach, and the waist pad attaches through larger D-rings at the bottom. Some holes in the waist pad bracing provide bottom attachment points for the shoulder straps. The ALICE straps need no further attachment points, and accordingly, the frame doesn’t provide them.

Next, the rucksack itself. As packs go, it’s very large, but not quite as large as your average expedition pack. I’ve seen figures from 3800 to 5000 cubic inches cited (about 65L to 80L, for you metric fans/backpackers), which ranges from ‘enough for long trips with smart packing’ to ‘enough for long trips’. Curiously, given American experience in Vietnam, the pack itself is not waterproof3. There is a waterproof compartment in the lid, but it isn’t large enough to fit much or rated for heavy weights. The pockets and main compartment all feature drain holes to let out any water that gets in.

Speaking of external pockets, it has six: three large ones at the bottom, and three smaller ones nearer the top of the pack. The bottom pockets close by means of straps, as does the main pack; the bottom pockets, at least, feature snaps for quick-opening goodness4. The main compartment is divided in two; a smaller, secondary compartment on the frame side has inside compression straps. (It might also be a place to put a water bladder, if you have such a thing.) This compartment is absurdly spacious by backpacking standards; although it isn’t especially large in the absolute sense, the maximum cross-sectional area of the pack is significantly greater than your average modern backpacking pack5 of the same size. The outside of the pack is festooned with gear attachment points, loops of fabric through which you can tie, lash, or otherwise secure equipment to the pack. Of course, being a 1970s-vintage pack, it has none of the modern conveniences like bottom access, vertically separated internal compartments, a built-in rain cover, a dedicated hydration bladder compartment, zippers, a water bottle pocket… In the interests of saving space, let me say this instead. It is a large sack with pockets. That’s about all there is to it.

The large pack fits onto the frame by means of a large padded envelope at its top edge, as well as some retaining straps which attach to the frame near the bottom. The padded envelope at the top does double duty as the padding on the pack side of a more modern yoke. And, to be honest, it doesn’t do a very good job.

Let’s back up a bit first. I ordered an ALICE pack from an eBay surplus outlet because I wanted something I could take on backpacking trips (in particular, a camping trip for the upcoming eclipse) that I couldn’t break, and something which wouldn’t break the bank. Military surplus fits the bill on both accounts, and ALICE is cheaper and yes, more hipster than the current state-of-the-American-art, MOLLE6. Then I put it on, and realized that, although the frame and pack are solid, the parts you actually have to wear are not.

First: the shoulder straps. That’s literally all they are. Very little padding and no sternum strap. Nobody ever told the GI of the day that soldiering would be easy, but for a pack designed to carry a load of seventy pounds7, adding an extra eight ounces of softness in the straps seems like a no-brainer that the Army managed to brainlessly miss. The waist belt is a similar case: the padding reaches more or less from kidney to kidney; the official name for the padded piece is the ‘kidney pad’. It’s maybe three inches from top to bottom and eight across, and remember, behind the kidney pad there are two D-rings to hold it and nothing else. The pad has to isolate the wearer from a lot of force applied over a very small area. It doesn’t pay to skimp. Lastly, the padded envelope at the top of the pack does not do a very good job at keeping the frame off of the wearer’s back. I wore it for five minutes unloaded, and there was very little comfort to speak of. Something would have to change.

Fortunately, there is a solution. The ALICE pack is still popular among some ex-military who liked it during their days in the service, and also has a following among the prepper crowd8, as well as in the cheap-outdoorsman crowd (to which yours truly belongs). Someone from one or another crowd worked out how to attach the MOLLE yoke and waist belt to the ALICE frame, making what the internet calls the ALICE Hellcat9. Since I had foreseen the problems with the raw ALICE gear, I ordered some surplus MOLLE items at the same time. The MOLLE pack straps are a proper yoke, with padding for the upper back; the MOLLE waist pad is gigantic—it wraps around nearly to the front of my hips—and both stiffer and softer than the ALICE equivalent.

I won’t repeat the build instructions here; you can find them pretty easily by searching for ‘ALICE Hellcat’. After some time spent in assembly10, and some time spent with a kitchen lighter melting a frayed strap end back to something approaching integrity, I was ready to try it out. Most of my camping gear lives away from my apartment, so I had to improvise. A pillow on the bottom of the pack simulated a sleeping bag. A pair of ammo cans and a bunch of 7.62×39 simulated my heavy kit—rations, tent, mess and cooking equipment. Those ended up pushed against the frame by ‘clothes’, another pillow stuffed in the front and top of the pack. I cinched everything down, put the pack on, and tightened up up the straps. All told, the load was about 35 pounds, and the pack weighs five or six pounds itself.

And it was surprisingly comfortable. I’ve heard bad things about ALICE, even with the MOLLE upgrades, but in ten minutes of wearing the pack around my apartment11 with a fairly heavy load by backpacking standards12, I experienced neither the bounce and wobble people talk about (the MOLLE waist belt doesn’t quite fit the ALICE frame perfectly; it’s a touch loose) nor the frame digging into my back at any point. I should note that I’m very nearly ALICE-sized: the frame was designed with a 5’10” man in mind, and I am a 5’9″ man. Larger or smaller people may have different experiences. The MOLLE straps in particular are a worthwhile investment. Proper padding at the top of the pack is payoff enough for the price of admission. Beyond that, they also have a sternum strap and load-adjustment straps, so you can change the weight balance between hips and shoulders on the fly. Beyond the serious ergonomic gains, I now have some spare ALICE attachment straps I intend to loop through some of the lashing points for utility purposes. For instance, they may carry my Pattern 37 British canteen, so I have some water on the outside of the pack. In a similar vein, I expect I could use them to secure other parts of my Pattern 37 webbing to the pack if I need extra capacity.

That’s all the testing I did—or at least all the testing I’m going to report before the inaugural trip. “It works in my apartment” is not a ringing endorsement of outdoors gear, and there are some outstanding questions about this setup. Will my frame attachment straps hold? Does the pack provide adequate access to supplies on the march? Will the lack of waterproofing be a serious problem? The trip is in about two weeks, and although it’s only an overnight, it should provide a much better indication of how the Hellcat Light works in actual practice. Expect Part II after I return.


  1. It’s my understanding that frame packs were issued starting in about 1965, but they were issued alongside the 1956 and 1967-pattern load-carrying gear, rather than being part of either set. 
  2. I think a reasonable marker for modern load-carrying gear is, “Has an associated frame pack.” By that measure, the British didn’t have modern load-carrying gear until the Pattern of 1985 PLCE. 
  3. It may be that American experience in Vietnam suggested that making something with as much stitching as pack waterproof was doomed from the start. Troops were issued waterproof liners of various sizes instead. 
  4. Not as quick as a zipper, obviously. 
  5. The ALICE packs had to fit above a pistol belt, so rather than build tall, they built wide and deep instead. 
  6. It’s a shame we didn’t name our other web kit so creatively. BETTY in WW2, say. I suppose acroynm-sanity is a modern phenomenon. 
  7. S.L.A. Marshall wasn’t even dead yet, and he still would have been rolling in his grave. 
  8. Because it’s surplus, and preppers love them some surplus. 
  9. Technically, the standard Hellcat is a medium ALICE ruck on the ALICE frame. The medium pack rides high enough to put a MOLLE sleep system carrier beneath it, attaching to some of the pack lashing points. This makes for a pack about as large as the unmodified large ALICE rucksack in volume terms, with extra compartmentalization, which substitutes for bottom access. If ever I’m interested in a serious backpacking trip, though, I can still add the sleep system carrier and/or MOLLE sustainment pouches; doing both with the large rucksack makes a pack with something like 8000 cubic inches/130L of volume, which is more gear than I could carry for very far. 
  10. When connecting the MOLLE straps to the ALICE frame, the attachment straps make two laps. Once around the frame, once through the buckle, then repeat around the frame and through the buckle again. Otherwise they slip. 
  11. To my wife’s amusement. 
  12. I’m not an experienced backpacker by any means, but it’s my understanding that packs north of thirty pounds are out of vogue among the lightweight backpacking set nowadays.